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a b s t r a c t

Parametric conditional copulamodels allow the copula parameters to vary with a set of co-
variates according to an unknown calibration function. Flexible Bayesian inference for the
calibration function of a bivariate conditional copula is introduced. The prior distribution
over the set of smooth calibration functions is built using a sparse Gaussian process (GP)
prior for the single index model (SIM). The estimation of parameters from the marginal
distributions and the calibration function is done jointly via Markov Chain Monte Carlo
sampling from the full posterior distribution. A new Conditional Cross Validated Pseudo-
Marginal (CCVML) criterion is used to perform copula selection and is modified using a
permutation-based procedure to assess data support for the simplifying assumption. The
performance of the estimation method and model selection criteria is studied via a series
of simulations using correct and misspecified models with Clayton, Frank and Gaussian
copulas and a numerical application involving red wine features.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Copulas are useful in modeling the dependent structure in the data when there is interest in separating it from
the marginal models or when none of the existent multivariate distributions are suitable. For continuous multivariate
distributions, the elegant result of Sklar (1959) guarantees the existence and uniqueness of the copula C : [0, 1]p → [0, 1]
that links the marginal cumulative distribution functions (cdf) and the joint cdf. Specifically,

H(Y1, . . . , Yp) = C(F1(Y1), . . . , Fp(Yp)),

where H is the joint cdf, and Fi is the marginal cdf for variable Yi, for 1 ≤ i ≤ p, respectively. This paper’s focus is on copula
models used in a regression setting in which covariate values are expected to influence the responses Y1, . . . , Yp through the
marginal models and the interdependence between them through the copula. The extension to conditional distributions via
the conditional copulawas used by Lambert and Vandenhende (2002) and subsequently formalized by Patton (2006) so that

H(Y1, . . . , Yp|X) = CX(F1|X(Y1|X), . . . , Fp|X(Yp|X)), (1)

where X ∈ Rq is a vector of conditioning variables, CX is the conditional copula that may change with X and Fi|X is the
conditional cdf of Yi given X for 1 ≤ i ≤ p. A parametric model for the conditional copula assumes CX = Cθ (X) belongs to
a parametric family of copulas and only the parameter θ ∈ Θ varies as a function of X. Throughout the paper uppercase
letters identify random variables, while their realizations are denoted using lowercase. In the remaining of this paper we
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assume that there exists a known one-to-one function g : Θ → R such that θ (X) = g−1(η(X)) with the calibration function
η : R → R in the inferential focus.

There are a number of reasons one is interested in estimating the conditional copula. First, in regression models with
multivariate responses, which is the main focus of this paper, one may want to determine how the dependence structure
among the components of the response varies with the covariates. Second, the copula model will ultimately impact the
performance of model-based prediction. For instance, for a bivariate response, (Y1, Y2), in which one component is predicted
given the other, the conditional density of Y1, given X = x and Y2 = y2, takes the form

h(y1|y2, x) = f (y1|x)cθ (x)(F1|x(y1|x), F2|x(y2|x)), (2)

where cθ (x) is the density of the conditional copula Cθ (x) and f (y1|x) is the marginal conditional density of y1 given X = x.
Hence, in addition to the information contained in the marginal model, in Eq. (2) we use for prediction also the information
in the other responses.

Third, when specifying a general multivariate distribution, the conditional copula is an essential ingredient. For instance,
if U1,U2,U3 are three Uniform(0, 1) variables, when applying a vine decomposition using bivariate copulas (e.g., Czado,
2010) their joint density is

c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)cθ (u2) (P(U1 ≤ u1|u2), P(U3 ≤ u3|u2)) ,

where cij is the density of the copula between variables Ui and Uj and cθ (u2) is the density of the conditional copula of
U1,U3|U2 = u2. Finally, a conditional copula with predictor values X ∈ Rq in which η(X) is constant, may exhibit non-
constant patternswhen some of the components ofX are not included in themodel. This pointwill be revisited in Section 6.1.

When estimation for the conditional copula model is contemplated, one must consider that there are multiple sources
of error and each will have an impact on the model. Even in the simple case in which the estimation of the marginals and
copula suffers from errors that depend only on x one obtains via Taylor expansion:

cθ (x)+δ3(x)(F1|x(y1|x) + δ1(x), F2|x(y2|x) + δ2(x)) = cθ (x)(F1|x(y1|x), F2|x(y2|x)) (3)

+ c(1,0,0)θ (x) (F1|x(y1|x), F2|x(y2|x))δ1(x) (4)

+ c(0,1,0)θ (x) (F1|x(y1|x), F2|x(y2|x))δ2(x) (5)

+ c(0,0,1)θ (x) (Fx(y1), Fx(y2))δ3(x) + O(∥δ(x)∥2), (6)

where c(1,0,0), c(0,1,0) and c(0,0,1) are the partial derivatives of cz(x, y) w.r.t. x, y and z, respectively, and δi(x), 1 ≤ i ≤ 3, denote
various estimation error terms due to model misspecification, e.g. δ3(x) is the error in estimation of the copula parameter at
a given covariate value x. The right hand term in Eq. (3) marks the correct joint likelihood while (4)–(6) show the biases
incurred due to errors in estimating the first and second marginal conditional cdfs and the copula calibration function,
respectively. It becomes apparent that in order to keep the estimation error low, one must consider flexible models for
the marginals and the copula.

Depending on the strength of assumptions we are willing to make about η(x), a number of possible approaches are
available. The most direct is to assume a known parametric form for the calibration function, e.g. constant or linear, and
estimate the corresponding parameters by maximum likelihood estimation (Genest et al., 1995). This approach relies on
knowledge about the shape of the calibration function which, in practice, can be unrealistic. A more flexible approach
uses non-parametric methods (Acar et al., 2011; Veraverbeke et al., 2011) and estimates the calibration function using
smoothing methods. Recently, we have seen a number of developments using nonparametric Bayesian techniques for
estimating a multivariate copula using an infinite mixture of Gaussian copulas (Wu et al., 2014), or via flexible Dirichlet
process priors (Wu et al., 2015; Ning and Shephard, 2017). The infinite mixture approach in Wu et al. (2014) was extended
to estimate any conditional copula with a univariate covariate by Dalla Valle et al. (2017), while an alternative Bayesian
approach based on a flexible cubic spline model for the calibration functions was built by Craiu and Sabeti (2012). For
multivariate covariates, Sabeti et al. (2014), Chavez-Demoulin and Vatter (2015) and Klein and Kneiß (2015) avoid the curse
of dimensionality that appears even for moderate values of q, say q ≥ 5, by specifying an additive model structure for
the calibration function. Few alternatives to the additive structure exist. One exception is Hernández-Lobato et al. (2013)
who used a sparse Gaussian Process (GP) prior for estimating the calibration function and subsequently used the same
construction for vine copulas estimation in Lopez-Paz et al. (2013). However, when the dimension of the predictor space is
even moderately large the curse of dimensionality prevails and it is expected that the q-dimensional GP used for calibration
estimation will not capture important patterns for sample sizes that are not very large. Moreover, the full efficiency of the
method proposed in Hernández-Lobato et al. (2013) is difficult to assess since their model is build with uniform marginals,
which in a general setup is equivalent to assuming exact knowledge about the marginal distributions. In fact, when the
marginal distributions are estimated it is of paramount importance to account for the resulting variance inflation due to
error propagation in the copula estimation as reflected by Eqs. (3)–(6). The Bayesian model in which joint and marginal
components are simultaneously considered will appropriately handle error propagation as long as it is possible to study the
full posterior distribution of all the parameters in the model, be they involved in the marginals or copula specification.

Great dimension reduction of the parameter space is achieved under the so-called simplifying assumption (SA) that
assumes Cθ (X) = C , i.e. the conditional copula is constant (Gijbels et al., 2015). The SA condition can significantly simplify the
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