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a b s t r a c t

The concordance correlation coefficient (CCC) is widely used to assess agreement between
two observers for continuous responses. Further, the CCC is extended for measuring agree-
ment with discrete data. This paper proposes a variance components (VC) approach that
allows dependency between repeated measurements over time to assess intra-agreement
for each observer and inter- and total agreement amongmultiple observers simultaneously
under extended three-way generalized linear mixed-effects models (GLMMs) for longitu-
dinal normal and Poisson data. Furthermore, we propose a weight matrix to compare with
existing weight matrices. Simulation studies are conducted to compare the performance of
the VC, generalized estimating equations andU-statistics approacheswith differentweight
matrices for repeated measurements from longitudinal normal and Poisson data. Two
applications, of myopia twin and of corticospinal diffusion tensor tractography studies, are
used for illustration. In conclusion, the VC approach with consideration of the correlation
structure of longitudinal repeated measurements gives satisfactory results with small
mean square errors and nominal 95% coverage rates for all sample sizes.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In many clinical studies, measurements of interest can be assessed on dichotomous, polychotomous, ordinal, count or
continuous scales by several methods (e.g., observers, raters, devices, technologies, etc.). Note that hereafter we refer to
measurement methods as observers. Furthermore, a subject can be measured many times by each of several observers
to produce repeated measurements over time for longitudinal data. Therefore, it is necessary to assess the agreement or
reproducibility between replicated readings produced by a single observer or among multiple measurement methods. The
concordance correlation coefficient (CCC) proposed by Lin (1989), is used to assess agreement between two observers on
a continuous scale by measuring the variation of the linear relationship between each pair of data from a 45◦ line through
the origin. Some extensions of CCC are used to measure agreement among more than two observers (Barnhart et al., 2002;
Carrasco and Jover, 2003; King and Chinchilli, 2001) or to produce CCC estimates on discrete data (Carrasco and Jover, 2005;
King and Chinchilli, 2001).

There are at least three frequentist research directions for the estimation of CCC. One direction is to estimate CCC via
generalized estimating equations (GEE). Barnhart and Williamson (2001) proposed the GEE approach with three sets of
estimating equations to estimate CCC between two observers for continuous data. Further, the estimation of indices for
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assessing intra-, inter- and total agreement with replicated readings produced by multiple observers simultaneously via
GEE has also been constructed (Barnhart et al., 2005). As an example of the second direction, King and Chinchilli (2001)
proposed a generalization of CCC for continuous and categorical data by using U-statistics (US). Furthermore, a class of
repeated measures CCC with an unstructured correlation structure of repeated measurements that can be expressed as
a ratio of functions of U-statistics was developed by King et al. (2007a, b). In addition to GEE and U-statistics, Carrasco
and Jover (2003) proposed a third means of estimating CCC for more than two observers through variance components
(VC) under a two-way linear mixed model (LMM). Carrasco (2010) extended the estimation of CCC via the VC approach to
generalized linear mixed-effects models (GLMMs) for count data. When repeatedmeasurements are assessed from different
observers over time, the repeated measures CCC for longitudinal repeated measurements through VC was also developed
(Carrasco et al., 2009). However, the repeated measures CCC through VC proposed by Carrasco et al. (2009) can only assess
total agreement among multiple observers for continuous responses. Moreover, it has been adapted to estimate the CCC
only with a diagonal matrix of weights between different repeated measurements over time for longitudinal data. For count
data, the two-way GLMM incorporating only the subject- and observer-specific random effects, together with the random
subject–observer interaction effect proposed by Carrasco (2010) has been considered but is not appropriate to estimate CCC
for longitudinal data.

In this paper, we use the definitions of agreement coefficients proposed by Barnhart et al. (2005) and King et al. (2007a)
with specifying aweightmatrix to obtain the indices of intra-, inter- and total agreement throughVC froman extended three-
way GLMM for longitudinal normal and Poisson data. In addition, we propose a weight matrix to compare with the general
weight matrix provided by King et al. (2007a) and develop the estimation of simultaneously assessing intra- and inter-
observer agreement, as well as total agreement with information allowing dependency between repeated measurements
over time. The rest of this paper is organized as follows. Section 2 introduces the extended three-way GLMM for agreement
data, together with the definitions of intra-agreement for each observer and inter- and total agreement among multiple
observers for longitudinal normal and Poisson data. In addition, the proposed weight matrix and the estimation of these
agreement coefficients under VC for longitudinal repeated measurements are provided in Section 2. Simulation studies in
Section 3 are constructed to compare the performance of the VC, GEE and US approaches. Section 4 presents the applications
of myopia monozygotic (MZ) twin and corticospinal diffusion tensor tractography (DTT) studies, and shows the results from
the VC and GEE approaches. Final conclusions and discussions are given in Section 5.

2. Models and methods

2.1. Generalized linear mixed-effects models (GLMMs)

Here we consider GLMMs to incorporate the possible heterogeneity due to different subjects, and subject–observer
and subject–time interactions. Let yijkl denote the lth observed reading assessed by the jth observer at the kth time for
the ith subject, where i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . , K and l = 1, . . . , L. The total number of observations is
n = I× J×K×L. Let Yi = (yi111, . . . , yi1KL, . . . , yiJ11, . . . , yiJKL)t be a JKL×1 vector of responses for the ith subject. Conditional
on the unobserved q-dimensional random-effects vector bijk, yijkl are independently distributed from an exponential family
with means E(yijkl|bijk) = µijk and variances Var(yijkl|bijk) = vijk = φv(µijk). Here v(·) is a specified variance function and φ

is a dispersion parameter that may not be known. Through the link function g(µijk) = ηijk, the conditional mean associated
with a linear predictor is given by

ηijk = xtijkβ+ ztijkbijk, (1)

where g(·) is amonotone differentiable link function, the vectors xijk(p×1) and zijk(q×1) are explanatory variables associated
with the fixed effects β and the random effects bijk, respectively. We extend the three-way LMM proposed by Carrasco et al.
(2009) and Tsai (2017) to the GLMM with incorporating repeated measurements rated by an observer at a certain time for
each subject. The extended three-way GLMM can be written as

ηijk = µ + αi + βj + γk + αβij + αγik + βγjk, (2)

where µ is the overall mean, αi is the subject-specific random effect assumed to be distributed as αi ∼ N(0, σ 2
α ), βj is

the observer-specific fixed effect, γk is the time-specific fixed effect, αβij is the random subject–observer interaction effect
assumed to be distributed as αβij ∼ N

(
0, σ 2

αβ

)
, αγik is the random subject–time interaction effect assumed to be distributed

as αγik ∼ N
(
0, σ 2

αγ

)
, and βγjk is the fixed observer–time interaction effect. The parameters αi, αβij and αγik are all assumed

to be mutually independent. We assume that the fixed-effects vector is β = (µ, β1, . . . βJ , γ1, . . . , γK , βγ11, . . . , βγJK )t and
the random-effects vector bijk = (αi, αβij, αγik)t follows a multivariate normal distribution, bijk ∼ MVN(0,G), where G is a
diagonal matrix with elements σ 2

α , σ
2
αβ and σ 2

αγ on the diagonal and zero otherwise.



Download English Version:

https://daneshyari.com/en/article/6868787

Download Persian Version:

https://daneshyari.com/article/6868787

Daneshyari.com

https://daneshyari.com/en/article/6868787
https://daneshyari.com/article/6868787
https://daneshyari.com

