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1. Introduction

Count data have become popular dependent variables in studies in various areas, especially due to the growing availability
of data on human and social behavior. Examples include the number of crimes in each neighborhood, number of accidents at
an intersection, number of Facebook comments, ridership in bike sharing programs, etc. The wide availability of count data
and the need for modeling such data as a function of other factors to establish causal relationships or to quantify correlated
relationships has led to the widespread use of count data models.

The most commonly used regression models for cross-sectional count data are Poisson regression and Negative-Binomial
regression. In addition, the Conway-Maxwell-Poisson (CMP) distribution (also known as the COM-Poisson distribution)
has gained increasing popularity for its flexibility and ability to handle both over and under dispersed data. Revived by
Shmueli et al. (2005), the CMP distribution is a two-parameter generalization of the Poisson, Bernoulli, and Geometric
distributions. Suppose Y is a random variable that follows a CMP distribution, then the probability mass function (p.m.f.)
forY € {0, 1, 2, ...} is defined as
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The CMP distribution includes three well-known distributions as special cases: Poisson (v = 1), Geometric (v = 0, A <
1), and Bernoulli (v — oo with probability ﬁ ). Due to the additional parameter v, the CMP distribution is flexible enough
to handle both over dispersion (v < 1) and under dispersion (v > 1) which are common in count data (Sellers and Shmueli,
2010). For more details on the distributional properties please refer to Daly and Gaunt (2016), Sellers et al. (2012), Minka et
al. (2003).

One of the major limitations of the CMP distribution is that the normalizing constant ¢ (A, v), which is an infinite series,
does not have a closed form representation, and therefore there is no closed form representation available for the mean. This
makes it difficult to model the mean directly as a function of covariates, as in standard models such as Poisson and Logistic
regression. However, the CMP distribution belongs to the exponential family and thus has the properties and advantages of
that family. Defining # = (A, v), the CMP likelihood has the following form of an exponential family (Lehmann and Casella,
2006):
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where the natural parameters are 11(#) = In A and 7,(0) = —v with corresponding sufficient statistics T1(y) = y, To(y) =
In(y!) and A(@) = In ¢ (A, v), h(y) = 1, as mentioned in Shmueli et al. (2005).

Although CMP regression is flexible in terms of handling both over and under dispersion, it is sometimes too restrictive
for modeling nonlinear relationships or time series data. At the same time, additive models are widely used for modeling
nonlinear relationships such as time series (Dominici et al., 2002; Stieb et al., 2003). Additive models have the advantage of
being parsimonious while at the same time providing more flexibility to capture complicated relationships. Currently, there
exists no additive model implementation for the CMP regression. Motivated by the need for flexible count data regression
models for applications such as bike sharing, which can assist service providers in better management of their resources,
we develop an additive model for CMP regression. Existing additive model implementations are heavily dependent upon
the iterative reweighted least squares (IRLS) estimation framework, which currently does not exist for CMP regression. In
this study, we propose and implement an IRLS estimation framework for CMP regression and then extend that to additive
models.

The outline of this paper is as follows: In Section 2, we describe the CMP regression and the problems associated with
IRLS implementation. In Section 3, we develop an IRLS framework for estimating a CMP regression by providing theory and
the pseudo algorithm. We compare our proposed IRLS methodology with existing methods using an extensive simulation
study in Section 4. In Section 5, we use the IRLS framework to develop an additive model for the CMP distribution, and again
evaluate its performance using a simulation in Section 6. In Section 7, we use our proposed additive model to draw valuable
insights from a bike sharing application. Section 8 presents conclusions and future directions.

2. CMP regression

Assume that we have a random sample of n observations {y;, 8], 2/}, where ' = [1,xy,...,%,] and 2] =
[1, 2z, ..., Zg). In matrix notation, let Y = [y1,...,¥n]", X = [¥1,....%,]" and Z = [zy, ..., z,]" with the parameter
vectorsA = (A1, ..., A, v=(v1,...,v) and & = (&1, ..., &)'. We also denote mean and variance functions as E[-], V[-]
respectively.

When needed, we use the vector notation. With a slight abuse of notation, we extend the operations on scalars to
operations on vectors. For example, we write In(Y!) = (In(y;!), ..., In(y,))", In(A) = (In(x{), ..., In(x,))" and g:gﬁ =
(g 112?1 e gll:i’; )T. Unless otherwise stated, any operation on a vector simply denotes an extension of that operation to
each component of that vector.

The CMP regression can be formulated as

In(2) = XB (1)
In(v) = Zy (2)

where g € RPH!, y € R,

The log link is used for the A model. As mentioned in Sellers and Shmueli (2010), this choice of log link is useful for two
reasons. First, it coincides with the link function in two well-known cases: in Poisson regression, it reduces to E[y;] = A;; in
logistic regression, where p; = % it reduces to logit(p;) = In A;. The second advantage of using a log link function is that it
leads to elegant estimation, inference, and diagnostics. At the same time, we deliberately consider a log link for the v model,
although the canonical link is identity, to restrict model predictions to the range (0, co). This is important because while y
is unconstrained, v can only take non-negative values and we cannot use the identity link between v and p.

In applications, it is common to treat v as a nuisance parameter. For this reason, usually the data matrix Z contains only
the intercept. Yet, since the v parameter models the dispersion, it is always better to include covariates that can potentially
control for it (Sellers and Shmueli, 2013). In theory, one could use the same predictors for modeling both parameters.
However, in practice, to avoid collinearity issues, it is better to have at least one different covariate in either the In()) or

the In(v) model.
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