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a b s t r a c t

The problem of jointly estimating unbalanced multi-class Gaussian graphical models is
considered. Most existing methods require equal or similar sample sizes among classes.
However,many real applications donot have similar sample sizes. Hence, the joint adaptive
graphical lasso, a weighted l1 penalized approach is proposed for unbalanced multi-
class problems. The joint adaptive graphical lasso approach combines information across
classes so that their common characteristics can be shared during the estimation process.
Regularization is also introduced into the adaptive term. Simulation studies show that
the new approach performs better than existing methods in terms of false positive rate,
accuracy, Mathews correlation coefficient, and false discovery rate. The advantages of the
new approach are also demonstrated using a liver cancer data set.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In mathematics, a graph is composed of nodes and edges between nodes; the edges can be directed, undirected, or bi-
directed. In recent years, graphicalmodels have become popular in investigating networks. For instance, a gene network that
is composed of genes and connections among genes can be illustrated by a graph in which genes are represented by nodes
and connections are represented by edges. Under the multivariate Gaussian distribution assumption, a graphical model is
called a Gaussian graphical model and edges are undirected. The main idea behind inferring a graph from a set of variables
of certain samples is to identify an inverse covariance matrix (or precision matrix), elements of which indicate conditional
dependency between pairs of variables. Specifically, if the (i, j)th element in a precision matrix is 0, then variables i and j
are conditionally independent; otherwise, they are dependent, given all other variables. To illustrate using a gene network
again, if the (i, j)th element in a precision matrix is 0, then genes i and j are unconnected; otherwise, they are connected.

One natural way to estimate the precision matrix is to obtain a maximum likelihood estimator (MLE). However, an MLE
can hardly generate exact zeros in the estimated precisionmatrix, which gives us no clues about the conditional dependency
among variables. Moreover, under high-dimensional settings in which the number of variables is larger than or equal to the
number of samples, the MLE is ill defined. A number of studies have been proposed to obtain a sparse estimate of a precision
matrix. Related ideas date back to Dempster (1972), who suggested the idea of setting elements of a precision matrix to
zero and provided rules and algorithms, which were illustrated by a simple sample data set. However, Dempster’s (1972)
approach is computationally expensive except for in very low-dimensional settings. Meinshausen and Bühlmann (2006)
proposed neighborhood selection to estimate sparse precision matrices for high-dimensional settings. They firstly fit a
regression model using the least absolute shrinkage and selection operator (LASSO), proposed by Tibshirani (1996), for
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each variable, while treating all other variables as predictors. Then, if either the regression coefficient of variables i on j or
that of variables j on i is nonzero, the (i, j)th element in the precision matrix is estimated to be nonzero. Yuan and Lin
(2007), Friedman et al. (2008) and Rothman et al. (2008) studied penalized likelihood approaches with the l1 penalty
and estimated penalized MLEs using different algorithms. By doing this, model selection and parameter estimation were
simultaneously achieved. Yuan and Lin (2007) used the determinant maximization (MAXDET) algorithm. Friedman et al.
(2008) took advantage of the clockwise coordinate descent approach and developed the graphical lasso (Glasso) algorithm,
which is remarkably fast. Rothman et al. (2008) derived the optimization algorithm using Cholesky decomposition and the
local quadratic approximation to produce the sparse estimator which is permutation invariant. Nonetheless, it has been
shown that the LASSO method produces biases in regression. To correct biases, the smoothly clipped absolute deviation
(SCAD) penalty and the adaptive lasso were proposed by Fan and Li (2001) and Zou (2006), respectively. Fan et al. (2009)
employed the two penalties above in precision matrix estimation and solved the bias problem.

However, all of these approaches ignore the fact that observations may come from different classes. Since true precision
matricesmay have some differences among classes, assuming that observations all come from the samemultivariate normal
distribution is inappropriate. On the other hand, classes are related to each other in certain ways, so the network structures
of different classes may have something in common. For instance, patients with different types of diabetes (Type 1 diabetes,
Type 2 diabetes, and gestational diabetes) may have different gene network structures, but parts of the structures may be
exactly the same because they are all from diabetes patients. In this situation, it is inappropriate to estimate the precision
matrix by viewing all the observations as one group, since doing so ignores the distinctions among classes. Separately
estimating precision matrices with respect to each class fails to take advantage of the common structure among classes.
Therefore, jointly estimating precision matrices across multiple classes will take advantage of using information across
classes, so that the common structure can be estimated more precisely than when using separate estimation, and unique
structures can be found as well. Guo et al. (2011) proposed jointly estimating precision matrices for different classes by re-
parameterizing their off-diagonal elements to be multiples of a common factor across categories and using a unique factor
for each category. Their method could be solved by iterative weighted Glasso (Friedman et al., 2008). In addition, Danaher
et al. (2014) used generalized fused lasso or group lasso as the penalty and employed the alternating directions method of
multipliers (ADMM) algorithm to solve the optimization problem. Nevertheless, neither of them considered the problem of
unbalanced data, which is common in many real applications. For instance, certain types of cancer are rarely found, so the
numbers of samples for those types of cancer and for the normal population are very unbalanced. In those scenarios, the
majority class could easily dominate the estimation results when precision matrices are estimated jointly.

Therefore, the goal of this paper is to propose a joint estimation method for multiple Gaussian graphical models across
unbalanced classes, with a weighted l1 penalized approach, so that a common structure is estimated more precisely than by
using separate estimations, and unique structures can be discovered.

This article is organized as follows. In Section 2, we propose the weighted penalized likelihood approach. In Section 3, we
conduct simulation studies to compare our method with the existing methods. In Section 4, we apply our approaches to the
liver cancer data set analyzed by Chen et al. (2002) and de Souto et al. (2008). Section 5 contains our concluding remarks.

2. Joint adaptive graphical lasso approach

In this section, we first explain our model in Section 2.1 and then describe our joint adaptive graphical lasso (JAGL)
approach in Section 2.2.

2.1. Unbalanced multi-class Gaussian graphical models

Suppose we haveM heterogeneous classes with p variables, whereM ≥ 2. Themth class is expressed as a nm × pmatrix,
which is denoted as Xm wherem = 1, . . . ,M . Each row of Xm corresponds to an observation, and each column corresponds
to a variable. Let xmi = (xmi,1, . . . , x

m
i,p) be the ith row of Xm, i = 1, . . . , nm. With this notation, we write Xm as follows:

Xm
=

⎡⎢⎣ xm1,1 · · · xm1,p
...

. . .
...

xmnm,1 · · · xmnm,p

⎤⎥⎦ =

⎡⎢⎣ xm1
...

xmnm

⎤⎥⎦m = 1, . . . ,M.

Multiple Gaussian graphical models across unbalanced classes have the following two assumptions:

(i) Within each classm, xm1 , . . . , xmnm ∈ Rp are i.i.d MN [0, (Ωm)−1
], where the precision matrix,

Ωm
=

⎡⎢⎣ωm
1,1 · · · ωm

1,p
...

. . .
...

ωm
p,1 · · · ωm

p,p

⎤⎥⎦ ,
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