
COMSTA: 6528 Model 3G pp. 1–12 (col. fig: nil)

Please cite this article in press as: Amorim G., et al., Small sample inference for probabilistic index models. Computational Statistics and Data Analysis
(2018), https://doi.org/10.1016/j.csda.2017.11.005.

Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Small sample inference for probabilistic index models
G. Amorim a,*, O. Thas a,b, K. Vermeulen a, S. Vansteelandt c,d, J. De Neve e

a Department of Mathematical Modelling Statistics and Bioinformatics, Ghent University, Belgium
b National Institute for Applied Statistics Research Australia (NIASRA), School of Mathematics and Applied Statistics, University of
Wollongong, Australia
c Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Belgium
d Centre for Statistical Methodology, London School of Hygiene and Tropical Medicine, United Kingdom
e Department of Data Analysis, Ghent University, Belgium

a r t i c l e i n f o

Article history:
Received 22 March 2017
Received in revised form 8 November 2017
Accepted 11 November 2017
Available online xxxx

Keywords:
Bootstrap
Empirical likelihood
Rank estimation

a b s t r a c t

Probabilistic index models may be used to generate classical and new rank tests, with
the additional advantage of supplementing them with interpretable effect size measures.
The popularity of rank tests for small sample inference makes probabilistic index models
also natural candidates for small sample studies. However, at present, inference for such
models relies on asymptotic theory that can deliver poor approximations of the sampling
distribution if the sample size is rather small. A bias-reduced version of the bootstrap
and adjusted jackknife empirical likelihood are explored. It is shown that their application
leads to drastic improvements in small sample inference for probabilistic index models,
justifying the use of such models for reliable and informative statistical inference in small
sample studies.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction 1

Probabilistic index models were introduced by Thas et al. (2012) as a class of semiparametric models that can be used to 2

complement rank tests with interpretable effect size measures, without the need to assume a location-shift model. Bergsma 3

et al. (2009) described similarmodels,which they referred to as Bradley–Terry typemodels. Formore details on the connection 4

between probabilistic index models and their Bradley–Terry type models, we refer to Bergsma et al. (2012). Probabilistic 5

indexmodels can also be used to generate and extendmany of thewell-known rank tests such as, for example, theWilcoxon– 6

Mann–Whitney test, Kruskal–Wallis and Friedman tests (De Neve and Thas, 2015). 7

A probabilistic index model parameterizes the conditional probabilistic index 8

pr
(
Y ≼ Y ∗

| X,X∗
)

= pr
(
Y < Y ∗

| X,X∗
)
+ 0.5pr

(
Y = Y ∗

| X,X∗
)
, 9

in which Y and Y ∗ are outcomes associated with the covariates X and X∗, respectively, with (Y ,X) and (Y ∗,X∗) identically 10

and independently distributed randomvectors. The covariatemay be vector-valued. The probabilistic indexmodel is defined 11

as 12

pr
(
Y ≼ Y ∗

| X,X∗
)

= m(X,X∗
; β) = g−1(ZTβ) (X,X∗) ∈ X , (1) 13

where β is a p-dimensional parameter vector and m(X,X∗
; β) is a known function that satisfies 0 ≤ m(X,X∗

; β) ≤ 1, 14

m(X,X; β) = 0.5 and m(X,X∗
; β) + m(X∗,X; β) = 1 for all (X,X∗) ∈ X . The vector Z depends on the regressors, 15
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e.g. Z = X∗
−X . Themodel thus takes the form of a generalized linear model by relating ZTβ to the conditional probabilistic1

index through a known link function g(·). The set X is the subset of covariate pairs (X,X∗) for which the probabilistic index2

model is defined.3

Estimation ofβ in (1)was discussed in detail in Thas et al. (2012). Given a random sample of identically and independently4

distributed (Yi,Xi), i = 1, . . . , n, the outcomes are first transformed to so-called pseudo-observations Iij defined as 1 if5

Yi < Yj, 1/2 if Yi = Yj and 0 otherwise (i, j = 1, . . . , n). For each pair (Xi,Xj) the vector Zij is constructed. An estimator of β,6

say β̂, is then obtained by solving Un(β) = 0, with7

Un(β) =
1

| In |

∑
(i,j)∈In

Uij(β) =
1

| In |

∑
(i,j)∈In

A
(
Zij; β

) {
Iij − g−1 (

ZT
ij β

)}
, (2)8

where A
(
Zij; β

)
is a p-dimensional vector function of the regressors Zij and the parameter vector β, and the sum is limited9

to all pairs (i, j) for which (Xi,Xj) are in X (the set of such index pairs is denoted by In and has | In | elements). Under10

mild regularity conditions, the solution β̂ is consistent and asymptotically normal (Thas et al., 2012; De Neve, 2013), with11

covariance matrix that can be consistently estimated by a sandwich estimator, which is given by12

Σ̂
β̂

=

⎧⎨⎩ ∑
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∂βT
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,13

where φijkl is an indicator variable taking value 1 if the pseudo-outcomes Iij and Ikl share an index, and 0 otherwise.14

Simulation studies in Thas et al. (2012) and De Neve (2013) confirm the asymptotic distribution theory. However, even15

with only two regressors, their results also indicate that β̂, the sandwich estimator and the coverages of asymptotic Wald-16

based confidence intervals are only reliable for sample sizes of 50 or more. This is an important limitation, particularly17

because the abovemethods provide natural extensions of rank tests by, for example, allowing inference for treatment effects18

while controlling for covariates (DeNeve and Thas, 2015; Vermeulen et al., 2015). Only for the special case of aWilcoxon-rank19

sum test in randomized experiments, a covariate adjustment, based on a probabilistic index model, has been proposed for20

which permutation p-values are available (Vermeulen et al., 2015).21

To overcome the aforementioned limitations, we explore methods that are designed to give better small sample results.22

Resampling techniques, such as the bootstrap and jackknife, are often used as alternative approaches to increase accuracy in23

many statistical applications (Basu, 2001). However, they sometimes require strong computational power. For instance,24

direct application of the traditional non-parametric bootstrap to probabilistic index models requires solving B times25

(number of bootstrap samples) the nonlinear estimating equation Un(β) = 0 for β. Even solving the equation only once26

may already be computationally demanding because fitting a probabilistic index model requires modelling the pseudo-27

observations, resulting in an inflated number of estimating functions. We solve this issue by applying the bootstrapping28

U-statistics method of Jiang and Kalbfleisch (2012). This method simplifies the computational demands by resampling29

properly studentized terms from an asymptotic approximation of the estimating function that is a U-statistic of degree30

1 or 2. It hence avoids the need to repeatedly solve nonlinear equations and our simulation results show that the resulting31

coverages are often close to the nominal values.32

In addition to bootstrap, we also use methods based on empirical likelihood to improve small sample inference for33

probabilistic index models. The empirical likelihood method (Owen, 1988, 1990) maximizes a non-parametric likelihood34

subject to restrictions given by the estimating equations. The ratio of themaximized empirical likelihood over themaximized35

nonparametric likelihood, which corresponds to an unconstrainedmodel, is known as the empirical likelihood ratio statistic36

for which a Wilks’ theorem needs to be proven. Just as for the parametric likelihood ratio statistic, this Wilks’ theorem37

gives the asymptotic distribution under the hypothesis that the constrained model holds true. Confidence intervals of the38

parameters are subsequently found by inverting the empirical likelihood ratio test. For U-statistics, the model restrictions39

are non-linear, leading to a computationally expensive estimation process. The jackknife empirical likelihood method (Jing40

et al., 2009) reduces this computational cost by rewriting the U-statistic as a sum of asymptotically linear independent41

terms, making the constraints linear. Its use for probabilistic indexmodels was also suggested by Zhou (2012). However, this42

method, as any empirical likelihood method, requires that the constraints always have a solution, which is not necessarily43

true. Chen et al. (2008) proposed to adjust the empirical likelihood by including an artificial ‘‘pseudo-observation’’ so that44

a solution can always be obtained and Zhao et al. (2015) later adapted this approach to the jackknife empirical likelihood45

setting. In this paper we further adapt the adjusted jackknife empirical likelihood to the probabilistic index model setting46

and evaluate its performance in simulation studies. This method performs generally well, but may be strongly affected by47

finite-sample bias. To alleviate this problem, we propose a bias-reduced adjusted jackknife empirical likelihood approach48

that shows good empirical results for samples as small as 20 and with coverages close to the nominal values.49

2. Bias-reduced estimator for probabilistic index models50

Consider the estimating function (2) with51

A
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)
=

∂

∂β
m
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)
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m
(
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, (3)52
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