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a b s t r a c t

In dealing with the multiplicity problem of large dataset, clusters or families of hypotheses
are often the units of interest. A scoring method is motivated in adopting a rejection space
for p-values that are classified into spatial or labeled groups. A score thatmeasures the ben-
efits/costs ofmaking a true/false discovery is computed and rejection space thatmaximizes
the number of rejections with positive score is adopted. Renewal and boundary-crossing
theories are used to compute the exceedance probability of the score. Level of strong group
type I error control is validated using Monte Carlo and importance sampling methods. It is
shown that the scoringmethodmaintains detection power and achieves robustness against
model deviation. The scoring method is applied on a copy number variation tumor dataset
and short intervals of the chromosome with biological relevance are identified.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Maintaining strong control when correcting for multiple comparisons on a large number of p-values, for example by
applying the Bonferroni correction, can result in severe detection power loss. An important advancement of the statistical
community has made collectively over the past two decades is on how excessive small p-value proportions can be used for
declaring second-order significance. Benjamini and Hochberg (1995) proposed the use of false discovery rate (FDR) control
and showed that Simes (1986) procedure achieves this control. Genovese and Wasserman (2002) and subsequently many
other researchers, see for example Chi (2007) and references therein, studied the two-groups model that considering the
probability of a null hypothesis being true or false, and showed that there is successful detection when there is a minimum
threshold fraction of signals. With respect to p-value dependencies, FDR tests are less sensitive or conservative, see Sarkar
and Chang (1997), Storey et al. (2004), Wu (2008), and also less sensitive to model deviation.

With the development of modern technology, multiplicity problem gets more complex in large dataset. For instance,
microarray studies could involve testing tens of thousands of probes in the identification of differentially expressed genes.
Key statistical components of microarray analysis are examined in Allison et al. (2006). In addition to multiple testing,
one of the other components that are intensively used in the analysis of gene expression is the classification of genes to
categories or clusters on the basis of prior information or some sort of similarity metric. Similarly, in multiple hypothesis
testing, one approach to address multiplicity issue is to utilize the classification or structuring information of the dataset.
Hierarchical FDR-controlling procedure is introduced in Yekutieli et al. (2006) to hierarchically test families of hypotheses
that are arranged in a tree structure. The approach is applied to identify differentially expressed genes (see also Yekutieli,
2008 and Reiner-Benaim et al., 2007). Benjamini and Heller (2007) introduced a powerful testing procedure that using
clusters as the testing units of spatial signals and it has two main advantages. Firstly, FDR can be controlled on clusters.
Secondly, it increases signal-to-noise ratio when in many cases signals tends to be appeared in clusters.
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In this paper, we propose a score function that measures the benefits (true discoveries) and costs (false discoveries) of
rejecting p-values with labeling or location information. The method searches for positive score and adopts the rejection
critical vector that maximizes the number of rejections on the multi-group scenario. Each coordinate of the critical vector
represents a critical value for one group and null hypotheses with p-values less than the critical value are rejected. There
are two parameters in the score function that investigator needs to determine, a benefit/cost ratio whenmaking a true/false
discovery and a parameter that determines the level of strong group Type I error control. Efron (2005, 2007, 2008) and
Sun and Cai (2007) highlighted the benefits of estimating false discovery rate (referred as the local fdr) at the test statistic
values. It has a different flavor from the multiple comparison methods mentioned earlier and has the positive characteristic
of rejection at a value being chiefly determined by frequency of values lying close by. Though we convert these values to
p-values before defining the score function, there is a nice connection between scoring method in the one group setting and
local fdr. This will be elaborated in Section 2 where we introduce and motivate the score function for multiple grouping
p-values. In Section 3, we discuss how the parameters of the score function should be chosen and compute the intercept
parameter using analytical formulas, as well as Monte Carlo and importance sampling methods. In Section 4, we studied a
cross-sample tumor dataset to identify copy number variation (CNV) prone regions. We end the paper with a discussion in
Section 5, on the detection characteristics and robustness of the scoring method, followed by a preliminary numerical study
for dependency case.

2. Scoring rejection spaces

Consider a large dataset with identification tags or location information on the p-values that can be used to partition
them intom0 groups. Letmi be the number of p-values in group i for i = 1, . . . ,m0. Define the following,

Ri(ti) = number of rejections in group i for a candidate critical value ti;

R(t) =

m0
i=1

Ri(ti), total number of rejections, where t = (t1, . . . , tm0);

Vi(ti) = number of rejected true null hypotheses in group i;

V (t) =

m0
i=1

Vi(ti), total number of rejected true null hypotheses;

Si(ti) = number of rejected false null hypotheses in group i;

S(t) =

m0
i=1

Si(ti), total number of rejected false null hypotheses;

#(t) = number of groups containing rejected p-values.

We define a score function that counts the number of rejections, with two parameters that adjusted to the costs of
rejecting true null hypotheses and true null groups (a true null group contains only true null hypotheses). Denote the two
specified penalty parameters asλ and η (λ > 0 and η > 0). The score function is defined as follows.sc(t) = S(t) −λV (t) − η#(t).

The critical vector t that maximizes the number of rejections over the set {t : sc(t) ≥ 0} is chosen and those null hypotheses
in ith groupwith p-values less than the ith entry of the critical vector are rejected. Under the assumption that p-values of true
null hypotheses are independent and follow Uniform(0, 1) distribution, V (t) can be estimated as

m0
i=1 miti. A substitution

of the score function is thus

sc(t) = R(t) − λ

m0
i=1

miti − η#(t), (2.1)

λ = λ + 1 > 1 and sc(0) = 0. To simplify the exposition, we do not make use of the estimates of the proportion of false
null hypotheses. See Storey (2002, 2003) for the successful applications of these estimates in FDR control.

The score function is related to existing FDR methodology in one group setting. The FDR controlling procedure proposed
in Benjamini and Hochberg (1995) is known as the Benjamini–Hochberg (BH) procedure. It rejects p-values no larger than
the critical value t = max{i : p(i) ≤ iα/m}, wherem =

m0
i=1 mi is the total number of p-values, p(1), . . . , p(m) are the order

p-values and α is the desired controlling level. It is shown that the procedure controls FDR atπ0α, i.e. FDR = E[V (t)/R(t)] =

π0α ≤ α, with π0 is the proportion of true null hypotheses. Consider in the scoring method, m0 = 1, η = 0 and λ = α−1.
Since

{t : sc(t) ≥ 0} = {t : V (t)/R(t) ≤ α},

the BH procedure is the same as rejecting all p-values smaller than the critical value t that maximizing R(t) over the set
{t : sc(t) ≥ 0}. The score function also has close connectionwith local fdr. Let f0(z) and f1(z) be the densities of true and false
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