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a b s t r a c t

Non-Gaussian functional data are considered and modeling through functional principal
components analysis (FPCA) is discussed. The direct extension of popular FPCA techniques
to the generalized case incorrectly uses a marginal mean estimate for a model that has
an inherently conditional interpretation, and thus leads to biased estimates of population
and subject-level effects. The methods proposed address this shortcoming by using either
a two-stage or joint estimation strategy. The performance of all methods is compared
numerically in simulations. An application to ambulatory heart rate monitoring is used to
further illustrate the distinctions between approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Standard methods to analyze repeatedly observed exponential family data can be separated into two main categories:
marginal models, or population-average models, and conditional models, also known as mixed effects or subject-specific
models. The former models focus on inference for population-level effects, and are traditionally estimated using a
generalized estimating equations (GEE) framework (Liang and Zeger, 1986; Zeger and Liang, 1986; Liang and Zeger, 1995;
Fitzmaurice et al., 1993). In this note, we focus on the latter framework, which focuses on the within-subject associations,
because this perspective is most commonly employed in functional data analysis (FDA). The conditional model framework
is particularly attractive in FDA because it models the dependence inherent in the functional observation for a subject as the
realization of a latent random process, and this realization is often a quantity of interest. Unlike the common approach used
in a longitudinal data analysis, which assumes parametric subject-specific effects in a mixed model, the dependence of the
latent process in a functional data analysis is assumed unknown.

Functional data are commonly defined as observations on subjects that one can imagine as arising from the evaluation of
a subject-specific real-valued curve at a finite grid of points. In many cases, however, the grid is irregular across subjects or
sparse at the subject level. There has been tremendous interest in the analysis of functional data during the past fewdecades;
see, e.g., Ramsay and Silverman (2005) or Ferraty and Vieu (2006) for book-length overviews, and Sørensen et al. (2013) for
a brief introduction. One popular technique, used to describe the variability in a sample of curves, is functional principal
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component analysis (FPCA). The conceptual FPCA model for real-valued response curves Yi(t) for t ∈ T with smooth mean
function µ(t) and covariance functionΣ(t, t ′) is

Yi(t) = µ(t)+


k≥1

ξikψk(t)+ ϵi(t), (1)

where ξik ∼ (0, λk) are subject-specific zero-mean loadings that are uncorrelated and have variance λk, {λk, ψk(t)} is the
pair of eigenvalue/eigenfunction of the covariance Σ(·, ·) with λ1 ≥ λ2 ≥ · · · ≥ 0, and ϵi(·) is some zero-mean white
noise process. This is commonly known as the Karhunen–Loève (KL) expansion and is a very common approach to model
functional data (see, e.g., Di et al., 2009; Greven et al., 2010; Jacques and Preda, 2014). In practice, the sum in (1) is truncated
such that E[Yi(t)|ξi] = µ(t)+

M
k=1 ξikψk(t), whereM is a finite truncation.

Model (1) decomposes curves Yi(t) using shared basis functionsψk(·) and subject-specific scores ξik, and is very similar to
a mixed model: indeed, setting M = 1 and taking ψk(t) = 1,∀t yields the well-known random intercept model. However,
FPCA describes the directions of variation that appear in the sample and gives a parsimonious decomposition of the complex
variance structure Σ(·, ·). For sparse data in particular, FPCA borrows strength across subjects to estimate major patterns
of variation and improve estimation of subject-specific curves (Yao et al., 2005). Estimation techniques for model (1) have
been proposed and studied for dense grids, irregular observations, and sparsely observed functional data (see Ramsay and
Silverman, 2005; Yao et al., 2005, andmany others). A popular algorithm for FPCA, for both dense and sparse data, consists of
the following main steps: (i) estimate the marginal mean by assuming independence across subjects and across grid points
within a subject; (ii) estimate the marginal covariance of subject-specific deviations, again by assuming independence, and
take its spectral decomposition to obtain estimates of the eigenfunctionsψk(·) and eigenvalues λk; and (iii) conditioning on
the estimated mean function and eigenfunctions, estimate the scores ξik in a mixed model.

Analyzing repeated exponential-family outcomes using functional data approaches is currently an area of intensive
research (Hall et al., 2008; Chen et al., 2013; Serban et al., 2013; Huang et al., 2014; Gertheiss et al., 2015; Goldsmith et al.,
2015; Scheipl et al., 2016). Hall et al. (2008) extendedmodel (1) to handle non-Gaussian functional data. Here, only the latent
process is assumed to be Gaussian. Their proposed generalized FPCA (GFPCA) model is

E[Yi(t)|ξi] = h


µ(t)+

M
k=1

ξikψk(t)


, (2)

with a known response function h(·); more recently, this model framework has been extended to account for rare events
(Serban et al., 2013) and repeated functional observations on each subject (Goldsmith et al., 2015). As in model (1), it is
assumed that, conditional on the subject-specific scores ξik, the responses Yi(t)’s are independent over t . The estimation
method proposed by Hall et al. for model (2) directly extends the ideas from Gaussian response FPCA. However, for non-
Gaussian curves, using a marginal approach to estimate the mean and covariance in what is inherently a conditional model,
and then estimating subject-specific effects based on this mean and covariance, results in poor performance: the marginal
mean is biased for the mean of the specified model and, as a consequence, the estimation of basis functions and subject
effects is affected negatively. This is not an issue for model (1), of course, because the marginal and conditional mean are
the same.

To gain more intuition, consider binary response data arising from model (2) using a logistic link function. In this case,
the marginal mean α(t) = E[Yi(t)] does not equal h(µ(t)) if µ(t) ≠ 0. More specifically (see also the Appendix), for some
t0 ∈ T ,

α(t0) < h(µ(t0)), if µ(t0) > 0, and α(t0) > h(µ(t0)), if µ(t0) < 0. (3)

The amount of bias introduced by using a marginal estimate of the conditional mean depends on the amount of variability
in the latent subject-specific process.

Example. To illustrate this point, Fig. 1 shows two simulated samples of curves generated from model (2) with M = 1,
µ(t) = 2 sin(2π t) and ψ1(t) = sin(2π t); in one sample of curves λ1 = 1, and in the other λ1 = 4. The left panel
shows the curves on the logit scale, on which the data are generated and naturally interpreted; the right panel shows these
transformed to the probability scale, along with the marginal means of both samples. Although the samples share a mean
functionµ(t) on the logit scale and share a conditionalmean (given ξ = 0) on the probability scale, bothmarginalmeans are
biased estimates of h(µ(t)), and a larger bias is observed for themore variable sample. Indeed, when deriving their marginal
approach to estimate parameters in model (2), Hall et al. (2008) assumed the variation of the latent process around mean
µ(t) to be relatively small. This assumption, however, is easily violated in practice, and Hall et al. do not provide suggestions
for this case.

In this note, we argue that the GFPCA model (2) is correctly understood to have a conditional, rather than a marginal,
interpretation; as a result, we propose new techniques for estimation that are built on this distinction. We emphasize
the use of these methods for sparse data due to the benefits of borrowing strength across subjects in this setting, but
note that the same considerations exist in the dense case. Our approach is to make use of the generalized additive mixed
model framework that inherently underlies model (2); we estimate quantities of interest either in a frequentist framework
via a two-step procedure, or in Bayesian framework via a joint modeling algorithm. We show through numerical studies
that accounting for the dependence in this way leads to improved mean estimation and to improved prediction of latent
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