
Computational Statistics and Data Analysis 105 (2017) 59–75

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Fitting large-scale structured additive regression models
using Krylov subspace methods✩,✩✩

Paul Schmidt a,b,c,∗, Mark Mühlau b,c, Volker Schmid a

a Department of Statistics, Ludwig-Maximilians-Universität München, Munich, Germany
b Department of Neurology, Technische Universität München, Munich, Germany
c TUM-Neuroimaging Center, Technische Universität München, Munich, Germany

a r t i c l e i n f o

Article history:
Received 29 December 2015
Received in revised form 8 July 2016
Accepted 8 July 2016
Available online 21 July 2016

Keywords:
Markov chain Monte Carlo
Krylov subspace methods
Lanczos algorithm
Structured additive regression
Gaussian Markov random field
Image analysis

a b s t r a c t

Fitting regression models can be challenging when regression coefficients are high-
dimensional. Especiallywhen large spatial or temporal effects need to be taken into account
the limits of computational capacities of normal working stations are reached quickly. The
analysis of images with several million pixels, where each pixel value can be seen as an
observation on a new spatial location, represent such a situation. A Markov chain Monte
Carlo (MCMC) framework for the applied statistician is presented that allows to fit models
with millions of parameters with only low to moderate computational requirements. The
method combines a modified sampling scheme with novel accomplishments in iterative
methods for sparse linear systems. This way a solution is given that eliminates potential
computational burdens such as calculating the log-determinant of massive precision
matrices and sampling from high-dimensional Gaussian distributions. In an extensive
simulation study with models of moderate size it is shown that this approach gives results
that are in perfect agreement with state-of-the-art methods for fitting structured additive
regression models. Furthermore, the method is applied to two real world examples from
the field of medical imaging.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Structured additive regression (STAR) models (Fahrmeir et al., 2004) are an important tool for the applied statistician.
They allow adequate modeling of temporal, spatial and spatio-temporal effects as well as non-linear effects for continuous
covariates (Lang and Brezger, 2004). As the ability to store and process large amounts of data has been increased over
the past years the need to fit models with high-dimensional regression coefficients has increased as well. For example,
in spatial statistics available spatial information can be included as a latent Gaussian Markov random field (GMRF, Rue and
Held, 2005) using hierarchical models (Banerjee et al., 2014) which may lead to models with hundreds of thousands of
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parameters (Eidsvik et al., 2012). Further examples can be found in the analysis of biological and medical images (Tabelow
et al., 2011). The fixed lattice structure of these two- or three-dimensional images imposes a natural dependence structure
between adjacent pixels or voxels. To account for this information, hierarchical models can be used that have regression
coefficients of the size of the image dimension which can be up to several million elements (Gössl et al., 2000; Schmid et al.,
2006).

Even though computational equipment constantly improves over time there will always be situations in which most
ordinary working stations are on the edge of their capacities if the dimension of the problem exceeds a certain threshold. To
deal with this problem one can either increase the computational capacities ormodify themodel that needs to be fitted until
it meets the existing infrastructure.While the former solution is quite expensive and not always possible, much research has
been focused onmethods that deal with the latter aspect. Examples include approaches based on an approximate likelihood
(Vecchia, 1988; Stein et al., 2004; Fuentes, 2007) as well as data reductions methods (Banerjee et al., 2008; Eidsvik et al.,
2012). Even though these approaches sometimes provide us with the only useful solution, they still have the disadvantage
that they either yield only approximate solutions or do not take into account all available information. In contrast, only
few approaches exist that are able to use all information and yet give satisfactory results. The most promising approach we
found was the one recently proposed by Wood et al. (2015). They presented a relatively fast method for fitting generalized
additive models to large data sets by utilizing iterative updating schemes for the factorization of model matrices. However,
this approach still fails with respect to computational requirements when applied to situations we are facing every day (see
the applications below).

With respect to Bayesian inference on STARmodels, both deterministic andMCMCbased techniques have been published
over the last decades. Examples for deterministic approaches are the empirical Bayes approaches in BayesX (Brezger et al.,
2005; Umlauf et al., 2015) and the integrated nested Laplace approximation (INLA) approach (Rue et al., 2009). While these
methods produce fast and accurate results for models up to a certain size they are currently not suited to handle models
with high-dimensional parameters. This is mainly due to the fact that a joint (prior and full conditional) distribution for all
regression coefficients needs to be set up in order to correctly account for dependencies between regression coefficients. In
the presence of high dimensional coefficients it can be difficult to handle this joint distribution on ordinaryworking stations.
On the other hand,MCMCbased inference allows us towork on each parameter separately, thus representing an appropriate
basis for large-scale problems.

Most MCMC schemes for this type of models require the calculation of the log-determinant of a precision matrix Q . For
moderate sized problems this is done by first factorizing Q = LL′ using the Cholesky decomposition and then calculating
log |Q | = 2


i log Lii (Rue, 2001). Although the lower triangular matrix L can be computed efficiently by making use of the

sparsity structure of Q it still is a computational bottleneck or even impossible if Q is too large. Here we present a MCMC
sampling scheme that offers the possibility to avoid the calculation of the log-determinant completely by the cost of higher
acceptance rates.

The second bottleneck within most MCMC algorithms in the presence of high-dimensional regression coefficients is
to sample from the proposal distribution which requires to obtain a sample x from N(0,Q−1). Direct sampling usually
utilizes the Cholesky decomposition and solves L′x = z where z is a vector of standard normal random variables. If
this factorization is not possible alternative methods must be applied. Blocking (Roberts and Sahu, 1997) and sequential
strategies (Winkler, 2003) as well as the conjugate priors approach by Knorr-Held (1999) represent such alternatives.
While these blocking approaches are easy to implement, it turns out that the choice of blocks and the visiting order is
a non-trivial subject and has a major influence on the performance of the sampler (Winkler, 2003). In our experience
it cannot even be guaranteed that every choice of blocks will lead to the correct stationary distribution of the MCMC
chain. Another alternative but quite similar approach is the divide and conquer strategy presented by Rue (2001). While
this approach shows better performance than the simple blocking strategies it has the disadvantage that the marginal
density for one (possibly large) block needs to be calculated. The Lanczos algorithm, a Krylov subspace method (Saad, 2003)
which has previously gained much attention for sampling from very large Gaussian densities (Aune et al., 2013; Simpson
et al., 2013; Chow and Saad, 2014) offers an attractive alternative in these situations. It iteratively calculates an orthogonal
projection x̃ for the solution of Q 1/2x = z on a lower dimensional subspace. This produces a tridiagonal matrix and a set
of vectors that depend on Q which can be used to find an approximation to x. This procedure requires only matrix–vector
products and is applicable to a wide range of precision matrices without the need to adjust blocking structures or visiting
orders.

The rest of the paper is structured as follows. In Section 2, we briefly introduce the class of models we would like to
address and give a basic MCMC sampling scheme that is widely used within this class of models for moderate data sizes.
In Section 3, we show how the suggestions by Brezger and Lang (2006) can be combined with Krylov subspace methods in
order to provide a general Bayesian framework for the estimation of large scale regression models. In addition, we present
ways of how posterior samples for millions of parameters can be handled efficiently in the light of limited computational
capacities. Section 4 examines the behavior and performance of the proposedmethodwithin an extensive simulation study.
It is shown that our framework yields results for large-scale STAR models that are comparable to the ones obtained from
state-of-the-art approaches fitting these types of models but requiring only low tomoderate computational equipment. The
data of these simulations have a similar structure as the data used in the applications in Section 5. Finally, we discuss and
summarize our work in Section 6.
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