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a b s t r a c t

Usually, confidence intervals are built through inversion of a hypothesis test. When the
analytical shape of the test statistic distribution is unknown, Monte Carlo simulation can
be used to construct the interval. In this direction, a sequential Monte Carlo method
for interval estimation is introduced. The method produces intervals with guaranteed
confidence coefficients. Because in practice one always needs to establish a truncation on
the number of simulations, a simple rule of thumb is offered for choosing the number
of simulations as a function of desired upper bounds for the coverage probability. As a
novelty in the literature, the sequential Monte Carlo method presents equivalence with
the conventionalMonte Carlo test. In terms of performance, the superiority of the proposed
method is illustrated for two different problems, estimation of gamma distribution means,
and estimation of population sizes based on mark-recapture sampling. An example of
application for real data is offered for relative risk estimation following the circular spatial
scan test.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

A well-known method to obtain exact confidence intervals is the inversion of a hypothesis test method (Casella and 2

Berger, 2002, p. 420). For this, let T denote the test statistic, t0 to denote a realized value of T , and FT (t|θ) to represent 3

the probability distribution of T , where θ is a one-dimensional parameter to be inferred. If FT (t|θ) is decreasing in θ for 4

fixed t , an exact 100 × (1 − 2α)% confidence interval for θ , say (θ̂l, θ̂u), is obtained by solving FT (t0|θ = θ̂l) = 1 − α and 5

FT (t0|θ = θ̂u) = α, with α ∈ (0, 0.5). The reasoning is similar for the case where FT (t|θ) is increasing in θ . 6

If the analytical shape of FT (t|θ) is unknown, or if the solution (θ̂l, θ̂u) requires intractable calculations, one of the three 7

options can be tried: (i) asymptotic approximations for FT (t|θ). Well-established approaches are the Delta method (Casella 8

and Berger, 2002, p. 243) and the asymptotic efficiency ofmaximum likelihood estimators (Casella and Berger, 2002, p. 472). 9

The validity of the asymptotic approach has to be checked for each problem and, naturally, does not hold when the sample 10

size is small; (ii) if samples of T can somehow be generated for a fixed value of θ , then Monte Carlo (MC) simulation can 11

provide exact confidence intervals for many types of problems. In general, the validity of MC methods depends on certain 12

assumptions about the shape of FT (t|θ) (Preacher, 2012; DiCiccio and Efron, 1996; Efron, 1998) and; (iii) if MC methods 13

are infeasible, a nonparametric bootstrap method can provide a good solution (DiCiccio and Efron, 1996; Chernick, 1999). 14

The nonparametric bootstrap confidence interval is not exact, and its performance depends on each problem. The present 15

manuscript introduces a method of the type (ii). 16
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MC confidence intervals can be broadly separated into two different types, the percentile approach, divided in1

nonparametric and parametric bootstrap (Efron, 1979; Buckland, 1980; Efron, 1981; Buckland, 1982, 1983; Casella and2

Berger, 2002; Preacher, 2012), and the method based on inverting a hypothesis test.3

In the case of the percentile approach, methods of high performance are possible when dedicated to deal with specific4

problems. This is the case, for example, of themethods developed to infer the indirect effects inmediation analysis (Preacher,5

2012). A Markov chain Monte Carlo approach was proposed by Rzhetsky and Morozov (2001) in order to obtain confidence6

intervals for the substitution-rate variation in proteins. Interesting applications for population size estimation of animals7

through capture–recapture were used by Buckland (1980) and by Buckland (1982). Tyralis et al. (2013) proposed a MC8

method to construct confidence intervals for functions of a parameter in the cases where FT (t|θ) is known but has a com-9

plicated structure. The noise introduced by the Monte Carlo variability was not analytically explored by Tyralis et al. (2013),10

but a simulation study showed that the method performs well for some members of the exponential distribution family.11

Concerning the methods based on inverting a hypothesis test, it merits to cite the proposal of Bølviken and Skovlund12

(1996). Their method is based on a randomized procedure that requires the creation of an auxiliary statistic with same13

distribution as T , say T ∗, which by its turn has to be computable for each observed T ∗
= t∗0 and for each θ in the parameter14

space. If theMonte Carlo variation is ignored (equivalent tom → ∞), the interval (θ̂∗

l , θ̂∗
u ) is exact. But, creativity is required15

on the user’s part to find T ∗, and a general rule to guide in the search for T ∗ was not provided.16

In general, the performance ofMCmethods is strongly dependent on the validity of specific conditions about the shape of17

FT (t|θ), but conditions are difficult to check in practice because, usually, FT (t|θ) is unknown when MC is needed. Aiming to18

solve this problem, this paper introduces the sequential MCmethod. The sequential MCmethod has already been suggested19

by Silva (2014) in the proceedings of the 8th International Conference on Applied Mathematics, Simulation, Modeling20

(ASM’14), and here the method is evaluated through further analytical derivations, numerical study of its performance21

and an application for real data. Sequential MC makes use of the well-known ‘bisection method’, a numerical procedure22

extensively used for finding roots of equations (Autar et al., 2011).We can propose the following three important advantages23

of the sequential MC method in comparison to former methods:24

• The sequential MC method has the ability to establish the finite maximum number of Monte Carlo simulations needed25

to achieve a specific precision on the coverage probability, which only requires feasibility of Monte Carlo simulation.26

• Former methods are applicable only when the statistic used for constructing the interval is an estimator of θ . Unlike,27

with sequential MC one can proceed to get an interval estimate even when the statistic is not an estimator of θ , like the28

likelihood ratio test statistics, for example.29

• As a novelty in the literature, conclusions drawn from the proposedmethod will always agree with conclusions from the30

conventional MC hypothesis testing. Such duality is enjoyed when the exact confidence interval is feasible. Now, with31

the sequential MC method such convenient property is extended for the Monte Carlo approach.32

The notation FT (t|θ) depends on θ only, but, if Monte Carlo simulation is feasible, all results are valid in the presence of33

two or more nuisance parameters. As a sufficient condition for validity of the analytical properties deduced in this paper,34

FT (t|θ) is assumed monotone (increasing or decreasing) in θ for each fixed t . But note: monotonicity in θ is the basic35

condition for having real-line intervals even when exact solution is feasible. Thus, monotonicity is not really a limitation36

of the sequential MC method, but a condition for defining confidence intervals in general.37

This material is organized in the following way: next section offers a brief overview on the main procedures for38

constructing confidence intervals when exact inference is unpleasant or computationally unfeasible. Section 3 describes the39

sequential MC method and Section 4 describes the unification of testing and interval estimation followed by Monte Carlo40

designs. Section 5 presents a simulation study showing that, for estimation of a gamma distributionmean, the sequentialMC41

outperforms conventionalmethods in terms of accruing the desired coverage probabilities. For themark-recapture problem,42

Section 6 shows that, in comparison to one of the prominent former methods, called percentile method, the performance of43

the sequential MC is superior. Section 7 presents an example of how to use the method to construct confidence intervals for44

the relative risk associated to a spatial cluster detected by the circular scan test. Section 8 closes the paper with some last45

comments.46

2. Overview of former methods47

This section describes three of the prominent resampling/Monte Carlo methods for finding confidence intervals:48

bootstrap; BC-bootstrap; and the percentile. In addition, a brief introduction about Monte Carlo testing is offered as it shall49

be necessary later.50

Let W⃗ = (W1, . . . ,WN) denote a random sample containing information about a one-dimensional parameter θ , and let51

fW (w|θ) denote the probability density function (or probability function in the discrete case) ofWi, i = 1, . . . ,N . Also, let T52

denote a statistic for θ , and t0 to denote a realized value of T .53

2.1. Bootstrap54

The nonparametric percentile, also called nonparametric bootstrap, and here simply called by ‘bootstrap’, is based on55

sampling N points from the random sequence W1, . . . ,WN B times. Thus, a sequence of (B − 1) bootstrap statistics
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