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a b s t r a c t

The existing differenced estimators of error variance in nonparametric regression are in-
terpreted as kernel estimators, and some requirements for a ‘‘good’’ estimator of error vari-
ance are specified. A new differenced method is then proposed that estimates the errors as
the intercepts in a sequence of simple linear regressions and constructs a variance estima-
tor based on estimated errors. The new estimator satisfies the requirements for a ‘‘good’’
estimator and achieves the asymptotically optimal mean square error. A feasible differ-
ence order is also derived, which makes the estimator more applicable. To improve the
finite-sample performance, two bias-corrected versions are further proposed. All three es-
timators are equivalent to some local polynomial estimators and thus can be interpreted as
kernel estimators. To determine which of the three estimators to be used in practice, a rule
of thumb is provided by analysis of the mean square error, which solves an open problem
in error variance estimation which difference sequence to be used in finite samples. Simu-
lation studies and a real data application corroborate the theoretical results and illustrate
the advantages of the new method compared with the existing methods.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider the nonparametric regression model

yi = m(xi) + ϵi (i = 1, . . . , n), (1)

where the design points xi satisfy 0 ≤ x1 < x2 < · · · < xn ≤ 1, m is an unknown smooth mean function, and
ϵi, i = 1, . . . , n, are independent and identically distributed random errors with zero mean and variance σ 2. Estimation of
σ 2 is an important topic in statistics. It is required in constructing confidence intervals, in checking goodness of fit, outliers,
and homoscedasticity, and also in estimating detection limits of immunoassay.

Most estimators of σ 2 proposed in the literature are quadratic forms of the observation vector Y = (y1, . . . , yn)T, namely,

σ̂ 2
W = Y TW̃Y/tr(W̃ ) , Y TWY , (2)

for some matrix W̃ , where Y T means Y ’s transpose, tr(W̃ ) means W̃ ’s trace, and W = W̃/tr(W̃ ). Roughly speaking, there
are two methods to obtain these estimators: the residual-based method and the differenced method. In the residual-based
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method, one usually fits the mean function m first by smoothing spline (Wahba, 1978; Buckley et al., 1988; Carter and
Eagleson, 1992; Carter et al., 1992) or by kernel regression (Müller and Stadtmüller, 1987; Hall and Carroll, 1989; Hall and
Marron, 1990; Neumann, 1994), and then estimates the variance σ 2 by the residual sum of squares. In general, the fitted
values of Y are Ŷ = HY for a linear smoothermatrixH , and σ 2 is then estimated in the form of (2) with W̃ = (I−H)T(I−H),
where I is the identity matrix. Buckley et al. (1988) showed that estimators based on minimax methods achieve the
asymptotically optimal mean square error (MSE) n−1var(ϵ2); Hall and Marron (1990) proposed a kernel-based estimator
which achieves the optimal MSE

n−1(var(ϵ2) + O(n−(4r−1)/(4r+1))), (3)

where r is the order ofm’s derivative, and the rate with r = 2 is that achieved in Buckley et al. (1988). They also pointed out
that optimal estimation of σ 2 demands less smoothing than optimal estimation ofm. In spite of asymptotic effectiveness of
these estimators, they depend critically on some smoothing condition in practical applications (Seifert et al., 1993)

{m(r)(x)}2dx/σ 2
≤ cr ,

for some smoothness order r and constant cr , e.g., r = 2 in Buckley et al. (1988). Given that our target is σ 2, while such
estimators require knowledge aboutm, it is commonly believed that these estimators are ‘‘indirect’’ for the estimation of σ 2.

The differenced method does not require estimation of the mean function, rather, it uses differencing to remove the
trend in the mean function, an idea originating in mean square successive difference (von Neumann, 1941) and time series
analysis (Anderson, 1971). Rice (1984) proposed the first-order differenced estimator

σ̂ 2
R =

1
2(n − 1)

n
i=2

(yi − yi−1)
2.

Later, Hall et al. (1990) generalized to the higher-order differenced estimator

σ̂ 2
HKT =

1
n − k1 − k2

n−k2
i=k1+1


k2

j=−k1

djyi+j

2

,

where k1, k2 ≥ 0, k1 + k2 is referred to as the difference order, and d−k1 , . . . , dk2 satisfy d−k1dk2 ≠ 0, and

k2
j=−k1

d2j = 1,
k2

j=−k1

dj = 0. (4)

The first condition in (4) ensures the asymptotic unbiasedness of the variance estimator, and the second condition removes
the constant term ofm(xi) from the viewpoint of Taylor expansion. Obviously, (d−1, d0) =


−1/

√
2, 1/

√
2

in Rice (1984)

satisfies these two conditions. Gasser et al. (1986) proposed the second-order differenced estimator

σ̂ 2
GSJ =

1
n − 2

n−1
i=2

((xi+1 − xi) yi−1 − (xi+1 − xi−1)yi + (xi − xi−1)yi+1)
2

(xi+1 − xi)2 + (xi+1 − xi−1)2 + (xi − xi−1)2
,

whose difference sequence satisfies the former two conditions (4), and an implied condition

1
j=−1

di,jxi+j = 0. (5)

Note here that the difference sequence

di,j
1
j=−1 depends on i; for equidistant design

σ̂ 2
GSJ =

2
3(n − 2)

n−1
i=2


1
2
yi−1 − yi +

1
2
yi+1

2

, (6)

whose difference sequence does not depend on i. The new condition (5) further eliminates the first-order term of m(xi)
besides the constant term, and results in less bias in variance estimation. Seifert et al. (1993) further developed the idea
through constraining

k2
j=−k1

di,jr(xi+j) = 0,

where r(·) is an ‘‘unknown’’ smooth function for the same purpose of bias-correction. Seifert et al. (1993) showed that Gasser
et al. (1986)’s estimator is a better choice than Hall et al. (1990)’s estimator; Dette et al. (1998) compared Hall et al. (1990)’s
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