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Friedman and Meulman, subsequently improved in the form of the Sparse K-means method
of Witten and Tibshirani, a natural and simpler hill-climbing approach is introduced. The
new method is shown to be competitive with these two methods and others.
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1. Introduction

Consider a typical setting for clustering n items based on pairwise dissimilarities, with §(i, j) denoting the dissimilarity
between items i, j € [n] := {1, ..., n}. For concreteness, we assume that §(i,j) > 0and §(i,i) = Oforalli,j € [n]. In
principle, if we want to delineate « clusters, the goal is (for example) to minimize the average within-cluster dissimilarity.
In detail, a clustering into « groups may be expressed as an assignment function C : [n] — [«], meaning that C(i) indexes
the cluster that observationi € [n] is assigned to. Let € denote the class of clusterings of n items into x groups. For C € €7,
its average within-cluster dissimilarity is defined as

AlC) =) m > D sG). (1)

ke(x] i,jeC—1(k)

This dissimilarity coincides with the within-cluster sum of squares commonly used in k-means type of clustering algorithms,
with §(i, j) = [|Ix — x; |2. If under the Euclidean setting, we further define cluster centers

1 .
= - Z x; withk € [«],

ieC—1(k)

then the within-cluster dissimilarity can be rewritten as follows,

aic) =Y ﬁz Sl =Y Y x— il
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Since this paper deals with non-Euclidean settings also, we will use the more general within-cluster dissimilarity defined
in (1). The resulting optimization problem is the following:

Given (8(i, j) : i,j € [n]), minimize A[C] over C € C.. (2)

This problem is combinatorial and quickly becomes computationally too expensive, even for small datasets. A number of
proposals have been suggested (Hastie et al., 2009), ranging from hierarchical clustering approaches to K-medoids.
Following the footsteps of Friedman and Meulman (2004), we consider a situation where we have at our disposal not 1 but
p > 2 measures of pairwise dissimilarities on the same set of items, with 8, (i, j) denoting the ath dissimilarity between items
i,j € [n]. Obviously, these measures of dissimilarity could be combined into a single measure of dissimilarity, for example,

8. ) =) 8ali)- (3)

Our working assumption, however, is that only a few of these measures of dissimilarity are useful for clustering purposes,
but we do not know which ones. This is the setting of sparse clustering, where the number of useful measures is typically
small compared to the whole set of available measures.

We assume henceforth that all dissimilarity measures are equally important (for example, when we do not have any
knowledge a priori on the relative importance of these measures) and that they all satisfy

Y i) =1, Vaelpl, (4)
i.je[n]
which, in practice, can be achieved via normalization, meaning,
8q(i, J)
> 8 )’
ij
This assumption is important when combining measures in the standard setting (3) and in the sparse setting (5) below.

Suppose for now that we know that at most s measures are useful among the p measures that we are given. For S C [p],
define the S-dissimilarity as

8s(i, ) =) 8a(i. J), (5)
aes
and the corresponding average within-cluster S-dissimilarity for the cluster assignment C as

1 -
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If the goal is to delineate k clusters, then a natural objective is the following:

Given (8,(i, j) : a € [pl, i,j € [n]), 6)
minimize Ag[C]over S C [p] of size s and over C € €.

8a(1,J) <

In words, the goal is to find the s measures (which play the role of features in this context) that lead to the smallest optimal
average within-cluster dissimilarity. The problem stated in (6) is at least as hard as the problem stated in (2), and in particular,
is computationally intractable even for small item sets.

Remark 1. In many situations, but not all, p measurements of possibly different types are taken from each item i, resulting in
avector of measurementsx; = (xj; : a € [p]). This vector is not necessarily in a Euclidean space, although this is an important
example — see Section 2.2. We recover our setting when we have available a dissimilarity measure §,(i, j) between x;, and
Xjq. This special case justifies our using of the terms ‘feature’ and ‘attribute’ when referring to a dissimilarity measure.

2. Related work

The literature on sparse clustering is much smaller than that of sparse regression or classification. Nonetheless, it is
substantial and we review some of the main proposals in this section. We start with the contributions of Friedman and
Meulman (2004) and Witten and Tibshirani (2010), which inspired this work.

2.1. COSA, sparse K-means and regularized K-means
Friedman and Meulman (2004) propose clustering objects on subsets of attributes (COSA), which (in its simplified form)
amounts to the following optimization problem

minimize » a(ICT'®)]) D> Y (Waba(i.j) + Awqlog ws),

kelk] i,jeC—1(k) a€lpl

over any clustering C and any weights wy, ..., w, > 0 subject to Z wy = 1. (7)
a€lp]
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