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a b s t r a c t

This studyproposes a robust estimator for stochastic frontiermodels by integrating the idea
of Basu et al. (1998) into such models. It is shown that the suggested estimator is strongly
consistent and asymptotic normal under regularity conditions. The robust properties of
the proposed approach are also investigated. A simulation study demonstrates that the
estimator has strong robust properties with little loss in asymptotic efficiency relative to
the maximum likelihood estimator. Finally, a real data analysis is performed to illustrate
the use of the estimator.
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1. Introduction 1

Technical efficiency (TE) measures have been used for several decades for benchmarking purposes. The concept of TE 2

was first introduced by Farrell (1957). Two strands of TE measurement then developed in the late 1970s and early 1980s: 3

data envelopment analysis (DEA), based on linear programming, and stochastic frontier analysis (SFA), which commonly 4

uses parametric stochastic frontier (SF) models. 5

DEA is mainly used to measure TE scores in the research fields of managerial and economics studies. Since the DEA 6

estimator often requires only input and output quantities, its empirical results are easy to understand and apply to develop 7

policy implications. However, a weakness of the DEA estimator is that it is sensitive to extreme values, making it difficult 8

to apply the estimator to data sets with outliers. Several attempts have been made to solve this problem. For example, 9

Wilson (1993, 1995) suggested a method for detecting outliers and Cazals et al. (2002) proposed a robust estimator 10

for the nonparametric frontier model. Simar (2003) employed the method of Cazals et al. (2002) to detect outliers by 11

using classical DEA estimators, which is named as the order-m approach. Florens and Simar (2005) also proposed robust 12

parametric estimators of nonparametric frontiers. Daouia et al. (2012) extended the idea of Cazals et al. (2002) to correct the 13

inherent bias in the classical order-m approach. Quantile-based robust efficiency measurement techniques have also been 14

developed by several studies such as Aragon et al. (2005), Wheelock andWilson (2008), Daouia et al. (2010), and Bruffaerts 15

et al. (2013). 16

The SFA framework is a counterpart to DEA in that it is a parametric approach. This means that the functional form, such 17

as production or cost functions, needs to be assumed before estimating the TE score. One of the pioneering methodologies 18

in the SFA framework was developed by Jondrow et al. (1982), who proposed a formula for separating a random error 19
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component and a TE component. Owing to the ease of application, various models have been developed and SF models1

have been widely employed in efficiency measurement studies. For example, the approach suggested by Battese and Coelli2

(1995) provides the TE and determinants of the TE. Numerous statistical methods have been proposed for estimating SF3

models. For example, Park and Simar (1994) and Park et al. (1998) considered semiparametric estimation in SF panel4

models and Kumbhakar et al. (2007) introduced an approach for nonparametric SF models. Kopp and Mullahy (1990) and5

Van den Broeck et al. (1994) applied the generalized method of moments procedure and Bayesian method, respectively, to6

parametric SF models. Kneip et al. (2015) proposed an alternative approach for nonparametric SF models using penalized7

likelihood.8

This study addresses the estimation of parametric SFmodels, particularly in the presence of very high- or low-performing9

observations,which canbe outliers due tomeasurement errors or atypical observations drawn from the tails of anunderlying10

distribution. These observations should be treated carefully because they can influence the estimation procedure. As is11

widely recognized in the literature, the maximum likelihood (ML) estimation method is influenced strongly by deviating12

observations like outliers or extreme values. Our simulation shows that applying the ML estimator (MLE) to the SF model13

suffers from the same problem, requiring the development of a robust estimation method to make it less sensitive to such14

deviating observations. However, to the best of our knowledge, little effort has been made in this regard.15

The purpose of this study is to propose a robust estimator for SF models under the assumption that the SF model16

is not misspecified. We do not address the problem of misspecification of the chosen parametric model. To construct a17

robust estimator, we consider the estimation method based on divergence, which evaluates the discrepancy between any18

two probability distributions. The divergence-based estimation method has been used successfully in constructing robust19

estimators. For a review, refer to Pardo (2006) and Cichocki and Amari (2010) as well as the references therein. In this study,20

we employ density power divergence, as proposed by Basu et al. (1998) (henceforth BHHJ). BHHJ proposed a minimum21

density power divergence (MDPD) estimator (MDPDE) and demonstrated that it possesses, relative to theMLE, strong robust22

properties with little loss in asymptotic efficiency. Compared with other robust methods such as the minimum Hellinger23

distance estimation, the BHHJ method does not require any smoothing methods. Hence, it avoids the difficulty of selecting24

a bandwidth when estimating the nonparametric density estimation. For this reason, the BHHJ method can be applied25

conventionally to any parametric model to which ML estimation can be applied. For example, see Juárez and Schucany26

(2004), Fujisawa and Eguchi (2006), and Kim and Lee (2013).27

The remainder of the paper is organized as follows. Section 2 reviews the BHHJ estimationmethod and proposes a robust28

estimator for SFmodels based on density power divergence. This section also examines the asymptotic and robust properties29

of the proposed estimator. In Section 3, we discuss our simulation study that compares the performance of the conventional30

MLE and MDPDE in the SFA framework. In Section 4, we analyze real data using both estimators. Lastly, Section 5 concludes31

the paper.32

2. Robust estimation in SF models33

This section reviews the MDPDE and integrates it into the SFA framework in order to estimate the TE.34

2.1. MDPD estimator35

In this subsection, we review the BHHJ estimation procedure that minimizes a density-based divergence measure.36

Let f and g be probability densities. To measure the difference between f and g , BHHJ defined density power divergence,37

dα(f , g), as follows:38

dα(g, f ) :=


 

f 1+α(z) −


1 +

1
α


g(z) f α(z) +

1
α

g1+α(z)

dz, α > 0,

g(z) {log g(z) − log f (z)} dz, α = 0.
(1)39

Note that the divergence includes Kullback–Leibler divergence and the L2-distance as special cases. Since dα(f , g) converges40

to d0(f , g) as α → 0, the above divergence with 0 < α < 1 provides a smooth bridge between Kullback–Leibler divergence41

and the L2-distance.42

Consider a family of parametric distributions {Fθ : θ ∈ Θ ⊂ Rm
} possessing densities {fθ } with respect to the Lebesgue43

measure, and let G be the class of all distributions having densities with respect to the Lebesgue measure. For a distribution44

G ∈ G with density g , the MDPD functional at G (i.e., Tα(G)) with respect to {Fθ : θ ∈ Θ} is defined by45

Tα(G) = argmin
θ∈Θ

dα(g, fθ ), (2)46

where it is assumed that Tα(G) exists and is unique, as will normally be the case. Note that when G belongs to {Fθ } (i.e.,47

G = Fθ0 for some θ0 ∈ Θ), Tα(G) becomes θ0. Roughly speaking, FTα(G) can be considered to be a projection of G onto the48

space of {Fθ : θ ∈ Θ} in terms of the divergence, and Tα(G) becomes the target parameter of the MDPDE below.49
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