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h i g h l i g h t s

• A continuous version of Multidimensional Scaling is presented (cMDS).
• The algorithm is designed based on CCCP and allows for easy variation.
• It is noted that most data analyses are based on a specific distance function.
• The method visualizes the data with respect to various possible distance functions.
• An R-package (cmdsr) is provided to facilitate the use of the cMDS.
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a b s t r a c t

Most Machine Learning (ML) methods, from clustering to classification, rely on a distance
function to describe relationships between datapoints. For complex datasets it is hard
to avoid making some arbitrary choices when defining a distance function. To compare
images, one must choose a spatial scale, for signals, a temporal scale. The right scale is
hard to pin down and it is preferable when results do not depend too tightly on the exact
value one picked. Topological data analysis seeks to address this issue by focusing on
the notion of neighborhood instead of distance. It is shown that in some cases a simpler
solution is available. It can be checked how strongly distance relationships depend on a
hyperparameter using dimensionality reduction. A variant of dynamicalmulti-dimensional
scaling (MDS) is formulated, which embeds datapoints as curves. The resulting algorithm
is based on the Concave–Convex Procedure (CCCP) and provides a simple and efficient way
of visualizing changes and invariances in distance patterns as a hyperparameter is varied. A
variant to analyze the dependence onmultiple hyperparameters is also presented. A cMDS
algorithm that is straightforward to implement, use and extend is provided. To illustrate
the possibilities of cMDS, cMDS is applied to several real-world datasets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The notion of distance is at the core of data analysis, pattern recognition and machine learning: most methods need to
know how similar two datapoints are. The choice of distancemetric is often a hidden assumption in algorithms. For complex
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Fig. 1. Sketches of different effects on the data structure that emerge when varying a hyperparameter in a distance function. The x-axis shows the
hyperparameter α, the y-axis is the embedding dimension. (A) Invariance: patterns hold independent of the hyperparameter. (B/C) Structure emerges
only for certain values of the hyperparameter. (C) Declustering: clusters are lost with increasing hyperparameter. (D) Information loss: Structure collapses
with increasing hyperparameter.

data, distance or similarity is not uniquely defined. On the contrary, they can be arbitrary to some extent (Carlsson, 2009).
It is, for example, often possible to describe signals on different temporal or spatial scales, and distance functions will give
a certain scale more weight than another. Each datapoint might describe several features, and there is often no unique,
optimal way to weigh the features when computing a distance measure: are two individuals more alike if they have similar
eye color or hair color, or do we think the shape of the nose matters most?

There are ways around that problem. One is to select the distance function that is best adapted to the task at hand, for
example the one that gives the best performance in classification (this is effectively what is done in kernel hyperparameter
selection Schölkopf and Smola, 2002). Another is to give up on distance and rely instead on the weaker notion of
neighborhood (Lum et al., 2013).

We argue here that a third option is available. One may study how the shape of the data evolves under a change in
the distance metric by representing the data in lower dimension. We suppose that a family of distance functions dα(x, y)
is defined by varying a hyperparameter α ∈ [0, 1], where α can represent, for example, different scales or the mixing
proportion of features. Please note that α does not have to be defined on this interval, but it seems natural to start with
a setting that is familiar from, e.g., convex combinations. Suppose that for a given level of α the relative distances between
datapoints are well described by representing the datapoints as points on the line. As we vary α the points will move, so that
each point now describes a curve. Many scenarios are possible, and we sketch them in Fig. 1. We may have full or partial
invariance: patterns in the data that hold regardless of the value of the hyperparameter (Fig. 1(A)). On the other hand, the
structure in the data may appear only for certain values of α (intermediate values in Fig. 1(B) and rather small values in C),
indicating that these values are more useful than others for characterizing the data. Analyzing the evolution of structures in
the data might reveal interesting dependencies, for example, declustering (Fig. 1(C)) or loss of information (Fig. 1(D)).

To visualize the effects of varying the distance function we suggest to embed data into a space of smooth curves, forming
what we call continuous embeddings: in continuous embeddings each datapoint is embedded as a smooth curve in Rd. We
will show that this approach is quite general.

Our implementation of continuous embeddings is based on multi-dimensional scaling (MDS), one of the most widely-
used tools for dimensionality reduction (Buja and Swayne, 2002; Buja et al., 2008). MDS builds on the pairwise relation
between single data points and has an intuitive way of characterizing the structure in high-dimensional data. MDS supposes
that one has distance information available, that is, we can characterize the data by a distance matrix. MDS seeks to find
a set of points in a low dimensional Euclidean space, such that the Euclidean distances between points approximate the
original distances. An exception is spherical MDS, where the embedding is constrained to a spherical manifold. MDS goes
back to the 1950s, when it was first introduced as classical scaling (Torgerson, 1952). In classical scaling, the distance
matrix is transformed to amatrix of inner products fromwhich an embedding can be computed using eigendecompositions
(Torgerson, 1952, 1958; Gower, 1966). Classical scaling finds a perfect embedding when the data can indeed be embedded
exactly, but in all realistic cases distancematrices are not exactly Euclidean and distance scaling ismore appropriate. Kruskal
(1964) introduced distance scaling by defining a cost function, Stress, that directly measures the error between original and
embedding distances. This cost function is then optimized over the space of embedding matrices which can be done using
gradient descent. Since the earlywork onMDSmanyother variants andoptimization solutions have beendiscussed. So called
non-metric variants of MDS seek to only recover the ranks of distances (Shepard, 1962). Ramsay (1997, 1978b) introduces a
statisticalmodel forMDS, allowing for amaximum likelihood estimate. This approach is implemented inMultiscale (Ramsay,
1978b). Other MDS variants based on Stress include Sammon’s mapping (Sammon, 1969), elastic stress (McGee, 1966),
multidimensional unfolding (Borg and Groenen, 2005) and local MDS (Chen and Buja, 2009). Isomap (Tenenbaum et al.,
2000) is also related to MDS. Here, distances are computed as geodesic distances on a manifold, which are then embedded
with classical scaling. In terms of optimization one of the most popular approaches is SMACOF, a majorization method for
MDS (Guttman, 1968; De Leeuw, 1977; De Leeuw and Heiser, 1977; De Leeuw, 1988).

Here, we introduce a continuous version of MDS (cMDS) by adding a smoothing penalty to theMDS cost function. Similar
ideas have been used in the visualization of dynamic networks. A network is commonly represented as a graph. A 2D
embedding of a static graph is often constructed using MDS or similar methods (Kamada and Kawai, 1989; Gansner et al.,
2005). In the dynamical context, where a graph is measured over time, it is important to preserve the so-called ‘‘mental
map’’ when jumping from one timepoint to the next (Misue et al., 1995). Early work on such controlled stability was done
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