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a b s t r a c t

The statistical matching problem involves the integration of multiple datasets where some
variables are not observed jointly. This missing data pattern leaves most statistical models
unidentifiable. Statistical inference is still possible when operating under the framework
of partially identified models, where the goal is to bound the parameters rather than
to estimate them precisely. In many matching problems, developing feasible bounds
on the parameters is equivalent to finding the set of positive-definite completions of a
partially specified covariancematrix. Existingmethods for characterising the set of possible
completions do not extend to high-dimensional problems. A Gibbs sampler to draw from
the set of possible completions is proposed. The variation in the observed samples gives
an estimate of the feasible region of the parameters. The Gibbs sampler extends easily to
high-dimensional statistical matching problems.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The statistical matching problem involves the integration of multiple datasets where we have a set of variables common
to all datasets, and other variables which only appear in some datasets. In the simplest terms, we have two samples A and B
of nA and nB independent observations, respectively, from the same population. In sample Awe have measurements on sets
of variables X and Y , and in sample Bwe have observations on variables X and Z . Our objective is to recover the joint density
function f (x, y, z) from the lower dimensional datasets. The statistical matching problem is a special class of a missing data
problem, where the defining characteristic is that we have no joint observations of Y and Z .

We often assume that the joint density function belongs to some parametric family {f (x, y, z; θ) : θ ∈ Ω}, where Ω

denotes some parameter space. The objective is to perform statistical inference on the parameter θ. Because of the missing
data structure in the statistical matching scenario some of the parameters may be unidentifiable. Statistical inference is still
possible if the model is viewed as a partially identified model. The concept of partially identified models stems from the
belief that identification is not a simple binary issue. In a partially identified model, the range of values that the parameter θ
can take while leaving the observed data likelihood function unchanged is some non-trivial set. Informally, given an infinite
dataset, under an identifiable model we can recover the true value of the parameters. In a partially identified model, given
an infinite dataset, we are limited to being able to restrict the parameters to some feasible set. In a partially identifiedmodel,
some elements of θ may be point-wise identifiable while others are only partially identifiable.

Standard estimation approaches for missing data problems can exhibit pathological behaviour when the model is only
partially identified. Use of the EM algorithm (Dempster et al., 1977) is complicated by the fact that the observed data
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Table 1
Missing data structure in the canonical statistical matching
problem. Observed dimensions for each observation have
been shaded.

likelihood will not have a unique maximiser, the likelihood will have a ridge over the allowable range of the partially
identified parameters. It can be shown that the EMparameter estimateswill converge to values that are located on likelihood
ridge, and that the limiting estimates depend on the choice of initial values (Schafer, 1997, p. 53). This phenomenon is
illustrated for the statistical matching problem in Section 4.2.2 of Rässler (2002). The high sensitivity to the initial values
complicates the interpretation of the single point estimate returned by the EM algorithm. Bayesian approaches easily extend
to partially identified models, however the posterior distribution can be highly sensitive to the prior, even in large samples
(Gustafson, 2015). Credible intervals can also have very poor frequentist coverage (Moon and Schorfheide, 2012). We will
pursue a frequentist strategy for estimating the partially identified parameters.

In the statistical matching problem, the partially identified parameters are often elements of a covariance matrix. It is
typical to have all elements of the covariance matrix identifiable, other than the values that require joint observations on
Y and Z . In this setting, estimating the identified set corresponds to determining the set of positive-definite completions
of a partially specified covariance matrix. Existing methods for doing so are not applicable when both Y and Z are
multivariate (D’Orazio, 2015). We take a new sampling based approach to characterising the identified set which is easily
applicable to high-dimensional problems. We propose a Gibbs sampler to draw values uniformly from the identified set of
covariance parameters. The range of the sampled values gives a direct measure of the uncertainty attached to the partially
identified parameters. The Gibbs sampler extends the range of datasets that can be analysed using the statistical matching
methodology.

2. The statistical matching problem

A standard mathematical description of the statistical matching problem is as follows (Rässler, 2002). Let X , Y , Z be
multivariate random variables with joint density function f (x, y, z; θ). Assume we have a sample of nA i.i.d. observations
distributed according to f (x, y, z; θ), which we will call file A, and another independent sample of size nB from f (x, y, z; θ),
which we will call file B. Let sAi be a row vector representing the ith observation in file A for i = 1, . . . , nA. Similarly, let
sBj be a row vector representing the jth observation in file B for j = 1, . . . , nB. The ith observation in file A can be written
as sAi = (sAiX , s

A
iY , s

A
iZ ), where sAiX is a row vector representing the value of X and sAiY , s

A
iZ are row vectors representing the

values of Y and Z , respectively. We can also form an identical partition sBj = (sBjX , s
B
jY , s

B
jZ ) for observation j in file B. Let the

observations in file A have the Z values missing and the observations in file B have the Y values missing. Table 1 represents
the data matrix in the statistical matching problem. We can consider inference in the statistical matching problem to be
inference under a partially identified model. We call a model partially identified if the observed data likelihood is flat for a
range of the parameters (Tamer, 2010). The identified set for a parameter is the range of values it can takewithout altering the
observed data likelihood function. We use the notation 2(θj) to denote the identified set for parameter θj. When analysing
a partially identified model we are interested in forming a set of plausible values for the non point-identified parameters.
For example, assume we have observations (X, Y , Z)T from a trivariate normal distribution,

N3


µ =


µX
µY
µZ


, 6 =


σXX σXY σXZ
σYX σYY σYZ
σZX σZY σZZ


,

and the standard statistical matching problem applies. The likelihood function formed from the observed data will not
depend on σYZ , and so σYZ can be considered to be a partially identified parameter. All the parameters are point-wise
identifiable other than σYZ . Even though we do not have any data to estimate σYZ from, as we do not observe Y and Z
jointly, our modelling assumptions induce non-trivial bounds on the parameter. Given the other parameters, the possible
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