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a b s t r a c t

The wide use of satellite-based instruments provides measurements in climatology on a
global scale, which often have nonstationary covariance structure. The issue of modeling
a spatial random fields on sphere which is stationary across longitudes is addressed with
a kernel convolution approach. The observed random field is generated by convolving a
latent uncorrelated random field with a class of Matérn type kernel functions. By allowing
the parameters in the kernel functions to vary with locations, it is possible to generate
a flexible class of covariance functions and capture the nonstationary properties. Since
the corresponding covariance functions generally do not have a closed form, numerical
evaluations are necessary and apre-computation table is used to speedup the computation.
For regular grid data on sphere, the circulant block property of the covariance matrix
enables us to use Fast Fourier Transform (FFT) to get its determinant and inverse matrix
efficiently. The proposed approach is applied to the Total Ozone Mapping Spectrometer
(TOMS) data for illustration.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The need to model a large-scale spatial data has been increasing in the past decades. Due to the wide use of high-
tech instruments and accumulation of observed data over time, it is not uncommon to have large data sets which have
nonstationary dependence structure, especially for global data. As an example, the Level 3 data set from the Total Ozone
Mapping Spectrometer (TOMS), a satellite measurement on the global ozone level, has 28,800 daily observations around
the globe and the spatial structure is far from being stationary (Cressie and Johannesson, 2008; Jun and Stein, 2008; Stein,
2008).

Statisticians have recognized the necessity tomodel nonstationary spatial randomprocesses and have proposed different
methodologies. Haas used lognormal and moving windowmethods to model acid deposition, where only the data in a local
windowwere used in both estimation and prediction (Haas, 1990). Sampson and Guttorp used a smooth deformation of the
spatial space, which is equivalent to a nonlinear transformation, to generate nonstationarity (Sampson and Guttorp, 1992).
Paciorek and Schervish introduced a class of nonstationary covariance functions with closed forms (Paciorek and Schervish,
2006). In spectral domain, Fuentes proposed a method where the random field is represented locally as stationary and
isotropic, but allowing the parameters to vary across space (Fuentes, 2001, 2002, 2005).
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Another approach to model nonstationarity is the process convolution approach introduced by Higdon et al. (1999). In
this approach, the random process Z(s) is defined as a kernel convolution of the underlying excitation field as

Z(s) =


Rd

k(s − u; ηs)X(u)du, (1)

where X(u) is an independent random process, and k(s; ηs) is a nonrandom, square-integrable kernel function with ηs
being the parameters at location s. It is easy to see that Z(s) has a constant mean zero and its covariance function
C(u, v) ≡ Cov(Z(u), Z(v)) is

C(u, v) =


Rd

k(u − w; ηu)k(v − w; ηv)dw. (2)

If ηs = η is a constant across all locations, the random process Z(s) generated by (1) is stationary and the covariance
function in (2) only depends on the difference u − v. By allowing ηs to vary at different locations, it is possible to generate
a nonstationary field on Rd. Convolution-based methods have the appealing features in nonparametric modeling since one
only needs to model the smoothing kernel k(·) instead of the covariance function which is restricted to be non-negative
definite. It is also not difficult to augment the space with time so that the kernel function and the excitation field are both
spatio-temporally related.

The choice of the kernel function is important in the modeling since it controls the properties of the resulting covariance
structure, including the range, variance, and smoothness. An intuitive choice would be the Gaussian kernel (Higdon et al.,
1999). It has the advantage of being evaluated analytically since the covariance function also has an exponential quadratic
form. However, as described in Stein (1999), the exponential quadratic covariance function is infinitely differentiable which
may not be realistic for physical processes. It is known that Matérn covariance function has a smoothness parameter which
can be estimated from the data. It has been shown that if the kernel function is chosen to be a modified Bessel function as
Zhu and Wu (2010) and Xia and Gelfand (2006)

k(x; σ , κ, ν) =
2Γ (ν + d/2)1/2νν/4+d/8σ 1/2

|x|ν/2−d/4

πd/4Γ (ν/2 + d/4)Γ (ν)1/2κν/2+d/4
Kν/2−d/4


2ν1/2

|x|
κ


, (3)

where Γ (·) is the gamma function and Kν(·) is the modified Bessel function of the second kind with order ν (Abramowitz
and Stegun, 1965), the corresponding covariance function takes the familiar Matérn form

C(u; σ , κ, ν) =
σ 2

2ν−1Γ (ν)


2ν1/2u

κ

ν

Kν


2ν1/2u

κ


. (4)

All themethodsmentioned up to noware for Euclidean spaceRd where the covariance structure is based on the Euclidean
distance. Recently, however, more and more large-scale data in climatology and environmental science are collected where
the curvature of the Earth cannot be simply neglected. The aforementioned Level 3 TOMS data are observed globally along
satellite tracks. It is apparently not appropriate to use Euclidean distance if the two locations are far apart from each other.

Some analysis methods designed specifically to handle global data, such as the TOMS data, are already available. Cressie
and Johannesson expressed the covariance matrix in terms of a diagonal matrix plus a fixed low rank matrix, which makes
it possible to compute the likelihood function exactly with massive spatial data (Cressie and Johannesson, 2008). Stein
further replaced the diagonal matrix with a sparse matrix hoping to capture both the small-scale and large-scale spatial
dependence structures (Stein, 2008). Stein also discussed the limitations of using reduced rank methodology to reproduce
the high-frequency spatial structure in the data (Stein, 2014). Moreover, Jun and Stein proposed an approach to producing
space–time covariance functions on sphere by applying differential operators to fully symmetric processes (Jun and Stein,
2007). In this way, nonstationary spatial random fields can be producedwith a closed form on sphere and time. They applied
this method to the analysis of TOMS data (Jun and Stein, 2008). With the aid of Discrete Fourier Transform (DFT), they were
able to calculate the exact likelihood for large data sets on regular grids.

Spatial random fields observedwithin a local region can often be approximated to be stationary or isotropic. On the other
hand, large scale or global processes usually show the pattern of nonstationarity since the factors driving the characteristics
of the random field typically vary at different locations. A special kind of nonstationarity is the axial symmetry as described
in Jones (1962). For an axially symmetric process, the first twomoments are invariant to rotationswith respect to the Earth’s
axis. Their covariance function depends on longitude only through their difference. Jun and Stein applied this approach to
model the ozone data described above on a global scale, where they consider the axially symmetric process by applying
differential operators to an isotropic process (Stein, 2007; Jun and Stein, 2007, 2008). The parameters of the random field at
each latitude are homogeneous.

Castruccio and Stein defined a spectral model at each latitude and utilized a coherence model across latitudes which
leads to a computationally efficient estimation procedure (Castruccio and Stein, 2013). Castruccio and Genton introduced a
flexible class of models by relaxing the assumption of longitudinal stationarity in the context of regularly gridded climate
model output (Castruccio and Genton, 2015). They also proposed a method of compressing the ensemble and was able to fit
a non-trivial model to a data set of one billion data points (Castruccio and Genton, 2016).
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