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a b s t r a c t

In regression modeling, often a restriction that regression coefficients are non-negative
is faced. The problem of model selection in non-negative generalized linear models
(NNGLM) is considered using lasso, where regression coefficients in the linear predictor
are subject to non-negative constraints. Thus, non-negatively constrained regression
coefficient estimation is sought by maximizing the penalized likelihood (such as the
l1-norm penalty). An efficient regularization path algorithm is proposed for generalized
linear models with non-negative regression coefficients. The algorithm uses multiplicative
updates which are fast and simultaneous. Asymptotic results are also developed for the
constrained penalized likelihood estimates. Performance of the proposed algorithm is
shown in terms of computational time, accuracy of solutions and accuracy of asymptotic
standard deviations.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

For generalized linearmodels (GLMs), a random variable Y follows a distribution belonging to the exponential family and
its mean value µ is related to the linear predictor η = x⊤β, where x is a vector for the data of a set of explanatory variables
andβ denotes a vector for the regression coefficients. Usually, one assumes that themean and the linear predictor are linked
through a link function g , i.e., g(µ) = η. The regression coefficients are estimated by maximizing the log-likelihood:β = argmax

β
log L(β;X, y), (1)

where log L denotes the log-likelihood derived from the data vector y and X is a matrix combining all the x’s.
Lassowasproposedby Tibshirani (1996) for simultaneously performing variable selection and shrinkage for least-squares

regressionswhen some important variables are to be selected out of ppredictor variables. Lasso can be conceived as adopting
a penalty using the l1-norm of the regression coefficients, where the l1-norm penalty can efficiently enforce sparsity. This
conceptwas extended to GLMs by Park andHastie (2007) by adding an l1 penalty to the log-likelihood function.Without loss
of generality, we assume that the predictor variables are standardized, i.e.,

n
i=1 xij = 0 and

n
i=1 x

2
ij = 1 for j = 1, 2, . . . , p.

Then, l1 regularized estimates in GLM are given byβ = argmax
β

{log L(β;X, y) − λ∥β∥1}, (2)
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where λ > 0 is the regularization parameter. Park and Hastie (2007) proposed an algorithm to compute the entire
regularization path of (2) using a predictor corrector method. Friedman et al. (2010) developed a highly efficient coordinate
descent method to solve (2).

Often, situations may arise that one needs the regression coefficients to be non-negative, such as non-negative least
squares (NNLS) which has been studied intensively in the regression literature; see Lawson (1995) and Franc et al. (2005).
Furthermotivating examples of non-negativity regression coefficients can be found in, for example,McDonald andDiamond
(1990), Sha and Lin (2007) and Wu et al. (2013).

Recently, non-negative lasso has been considered by Wu et al. (2013) where the regression coefficients are constrained
to be non-negative. They have used a multiplicative updating algorithm suggested by Sha and Lin (2007) for non-negative
quadratic programming problems. However, their algorithm is not readily applicable to l1-norm (or other) penalized GLMs
with non-negative coefficients since the corresponding log-likelihood functions are not necessarily quadratic in general. If
the penalty function contains only l1-norm, such as in expression (2), then the coordinate decent algorithm of Friedman
et al. (2010) can be modified to accommodate non-negative coefficients. This method, however, is difficult to be extended
tomore complex penalty functions, such as the fused lasso of Tibshirani et al. (2005). Other limitations of coordinate descent
include, for example, that it can be neither parallelized nor implemented in a block-wise way—two important approaches
to accelerate computation and convergence.

We propose in this paper a multiplicative iterative algorithm for l1 penalized GLMs with non-negative coefficients. This
multiplicative iterative algorithm has already been implemented in other applications, such as image processing (Chan and
Ma, 2012), baseline hazard function estimation in Cox regression (Ma et al., 2014b) and medical image reconstruction (Ma,
2010). This algorithm is easy to implement as it involves only the first derivative and it has been shown to converge much
faster when comparedwith, for example, some splitting algorithms (which can be conceived as special alternating direction
minimization method (ADMM)) in image processing (Chan and Ma, 2012). A parallel or block-iterative version of this
algorithm can be easily developed. For the purpose of simplifying discussions, we use only l1 penalty when explaining this
algorithm, but it can be easily extended tomore complicated penalties. Particularly, the extension to the case of non-negative
elastic net is also discussed in this paper. Another important contribution of this paper is that we develop asymptotic results
for constrained penalized likelihood estimation. We will demonstrate accuracy of the asymptotic variance formula through
a simulation study.

This paper is outlined as follows. In Section 2 the details of the multiplicative iterative algorithm are presented for
estimation of parameters in l1 penalized GLMs subject to non-negativity constraints on the regression coefficients. Section 3
discusses the elastic net extension of this method but still within the GLM framework. Asymptotic results for constrained
lasso are presented in Section 4. Section 5 demonstrates the efficiency of this algorithm by reporting its computation time
and other simulation results. A brief discussion on selection of the regularization parameter is presented in Section 6. We
apply the proposed algorithm to a real data in Section 7. Section 8 concludes the article.

2. Multiplicative iterative algorithm for l1 penalized non-negative GLMs

In this section, we describe the details of the multiplicative iterative algorithm to obtain the regularization path, namely
solving (2) for various values of λ under the non-negativity constraints. The constrained optimization of our interest isβ = argmax

β≥0
{φ(β) = l(β;X, y) − λ∥β∥1}, (3)

where l = log L and the constraint β ≥ 0 is interpreted elementwise. Since β ≥ 0, the objective function in (3) becomes

φ(β) = l(β;X, y) − λβ⊤ 1 (4)

where 1 denotes a vector of ones with the same size as β and the superscript ⊤ denotes matrix transpose. The
Karush–Kuhn–Tucker necessary conditions for the constrained optimization problem (3) are

∂φ

∂βj
= 0 if βj > 0 and

∂φ

∂βj
< 0 if βj = 0. (5)

Therefore, we wish to solve the following simultaneous equations

βj


∂ l
∂βj

− λ


= 0, (6)

where j = 1, 2, . . . , p and subject to allβj ≥ 0. In (6) and for the GLMmodel considered by this paper, ∂ l/∂βj = x⊤

j W(y−µ).
McCullagh and Nelder (1989), where xj = (xj1, . . . , xjn)⊤ is the vector of n observations on the jth predictor variable, W

is an n × n diagonal matrix with the ith diagonal element 1/(Vi∂ηi/∂µi) with Vi = var(Yi) and (y − µ) is a vector with n
elements (yi − µi).

We propose to solve (6) by utilizing the Multiplicative Iterative (MI) algorithm developed by Ma (2006); see also Ma
(2010) and Chan andMa (2012) for different applications of this algorithm.Writing ∂ l/∂βj = (∂ l/∂βj)

+
+ (∂ l/∂βj)

−, where
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