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a b s t r a c t

Simulation of random fields is a fundamental requirement for many spatial analyses. For
small spatial networks, simulations can be produced using direct manipulations of the co-
variance matrix. Larger high resolution simulations are most easily available for stationary
processes, where algorithms such as circulant embedding can be used to simulate a process
at millions of locations. We discuss an approach to simulating high resolution nonstation-
ary Gaussian processes that relies on generating a stationary random field followed by a
nonlinear deformation to produce a nonstationary field. A spatially varying variance coef-
ficient accounts for local scale effects. The nonstationary covariance function is estimated
nonparametrically, and the deformation function is then estimated in a variational frame-
work. We illustrate the proposed approach on synthetic datasets, a challenging tempera-
ture dataset over the state of Colorado and a regional climate model over North America.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction 1

Spatial analyses typically involve three common goals: the first is surface estimation based on incomplete or noisy 2

observations, the second is interpretation of a spatial model to gain scientific insight of a particular process, and the third is 3

simulation. Simulation plays an important role for both of the first two goals; in surface estimation simulation can be used 4

to quantify predictive uncertainty via conditional simulation and can also yield field realizations consistent with a partially 5

observed process. In the second goal, simulation can give insight into the statistical properties of a process, such as its spatial 6

length scale, smoothness, level crossings or extrema. 7

Suppose interest focuses on simulating a random process Z(s), s ∈ Rd. Without loss of generality we assume Z(s) is 8

a mean zero process; otherwise we would simulate a mean zero field onto which we add a nontrivial mean function. We 9

additionally assume Z(s) is a Gaussian process, whose stochastic behavior is then fully known once the covariance function 10

C(s1, s2) = Cov(Z(s1), Z(s2)) is specified. 11

Simulation of random fields can be either unconditional or conditional. Unconditional simulation is simply direct simu- 12

lation of the process Z(s). Conditional simulation, on the other hand, is the simulation of Z(s) conditioned on some observa- 13

tions in order to generate plausible realizations that are consistent with the partially observed process. In this manuscript, 14

we mainly focus on unconditional simulation, noting that conditional simulation can be directly formulated via uncondi- 15

tional simulations (Journel, 1974). 16

It seems there are at least three possibleways to simulate nonstationary field—first, use a stochasticmodel that allows for 17

nonstationarity and directly simulate from this (e.g., a nonstationaryMatérn); this requires a Cholesky decomposition of the 18

covariance matrix which is infeasible for large simulation grids. The second is to explicitly build such a process from a set of 19
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basis functions, e.g., using a Karhunen–Loéve expansion or polynomial chaos expansion. The final method is one explored in1

thismanuscript, where amapping is developed between the nonstationary process and a stationary process,whence simula-2

tions involve only the straightforward stationary generation.Wenote that there is some literature on simulationmethods for3

nonstationary intrinsic random functions, althoughwedonot focus on these here (Stein, 2001, 2002, and references therein).4

Our proposal relies on the spatial deformation approach of Sampson and Guttorp (1992) to achieve a mapping between5

the nonstationary and stationary plane. The basic idea is that in the stationary plane high resolution simulations are easy6

to produce from some existing method such as circulant embedding, and then the inverse transformation results in a high7

dimensional nonstationary simulation. Note we are primarily concerned with simulation, whereas Sampson and Guttorp8

(1992) and ensuing literature has focused almost exclusively on modeling and kriging. The type of nonstationarity that can9

be captured by deformation is either known as stationary isotropic reducible or stationary reducible (Perrin and Senoussi,10

1999, 2000). Deformation has successfully been used to capture a large number of physical processes (Guttorp et al., 1992;11

Monestiez et al., 1993; Guttorp and Sampson, 1994; Brown et al., 1994; Guttorp et al., 1994;Meiring, 1995), but not all types12

of nonstationarity canbe reduced to stationarity thisway, e.g., aMatérn covariancewith spatially varying smoothness cannot13

be (Stein, 2005; Paciorek and Schervish, 2006). Note some similarities with the time-deformation method in economics14

(Barndorff-Nielsen and Shepard, 2006).15

We consider two motivating environmental examples: the first is application in the field of stochastic weather gener-16

ators, while the second involves statistical emulation or analysis of a regional climate model. Stochastic weather gener-17

ators are probabilistic models whose simulations behave statistically similarly to observations (Wilks and Wilby, 1999).18

These simulators are used primarily in the hydrologic and climate sciences to perform downscaling or impact assessments19

(Semenov and Barrow, 1997). Typically, weather realizations are required on a grid, sometimes requiring simulation over20

very large geographical regions at high resolutions (Serinaldi and Kilsby, 2014). Following the technical development of our21

approach, we illustrate its implementation on a challenging temperature dataset over the state of Colorado. For the sec-22

ond example, we consider the problem of stochastically simulating fields of regional climate model (RCM) output that are23

consistent with RCM runs. These products are crucial for climate forecasting or model emulation, that is, using a statistical24

model as a fast surrogate for a computationally expensive physical climate model. RCMs are usually run coupled with a25

general circulation model (GCM) in order to better represent local nonstationarities that are driven by local geographical26

effects that are not well represented in a coarse GCM grid. The ability to quickly generate stochastic realizations from a high27

resolution nonstationary process is of fundamental importance for both of these applications.28

2. Simulation of random fields29

Our approach to nonstationary random field simulation relies on fast simulation algorithms for stationary or isotropic30

random fields. We begin this section with a brief overview of some classic algorithms for stationary simulation, Schlather31

(2012) and Kroese and Botev (2013) give nice recent overviews of some of these approaches among others.32

2.1. Stationary simulation33

Momentarily suppose the random field Z(s) is stationary, that is, C(s1, s2) = C(s1 − s2) is a function of the lag vector
separating two spatial locations. The spectral method is a traditional approach to approximately simulating stationary
random fields. The spectral method (Shinozuka and Jan, 1972) relies on using the spectral representation of a random field
requiring continuity of the covariance function,

Z(s) = Re


exp(2π ıω′s)dY (ω)


(1)

where ω ∈ Rd and dY (ω) is a complex-valued Gaussian measure with zero mean and whose pointwise variance is
F (C)(ω)dω,F denoting the Fourier transform. Simulations of Z(s) can then be approximately generated by using a discrete
approximation to the integral representation (1). The turning bandsmethod, originally suggested byMatheron (1973), relies
on simulating amultidimensional isotropic Gaussian random field by summing simulations fromone-dimensional processes
that have been embedded inmore than one dimension (Mantoglou andWilson, 1982; Dietrich, 1995; Gneiting, 1996, 1999).
In particular, realizations for d = 2, 3 are obtained via

Z(s) =
1

√
L

L
i=1

Zi(s · ei)

where {Zi(·)}Li=1 are mutually independent one-dimensional processes, {ei}Li=1 are unit vectors and · indicates the dot34

product. The key difficulty turns out to be identifying the one-dimensional covariance function that corresponds to the35

desired multidimensional covariance structure, with the most common two-dimensional case requiring solving an Abel36

integral equation (Gneiting, 1998). For stationary fields whose covariance can be represented as a convolution, C(h) =37 
g(s)g(s + h)ds, one can use the so-called random coin (or dilution) method to generate approximate realizations (Chilès38

and Delfiner, 1999; Schlather, 2012). Ehm et al. (2004) examined conditions on compactly supported covariance functions
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