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a b s t r a c t

A cross validation method for selection of statistics for Approximate Bayesian Computing,
and for related estimation methods such as the Method of Simulated Moments, is
presented. Themethod uses simulated annealing tominimize the cross validation criterion
over a combinatorial search space thatmay contain an extremely large number of elements.
A first simple example, for which optimal statistics are known from theory, shows that the
method is able to select these optimal statistics out of a large set of candidate statistics.
A second example of selection of statistics for a stochastic volatility model illustrates the
method in amore complex case. Code to replicate the results, or to use themethod for other
applications, is provided at http://www.runmycode.org/companion/view/1116.
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1. Introduction 1

Bayesian analysis centers attention on the posterior density, f (θ |y), where y is the sample, that is, a realization of a ran- 2

dom vector Y , and θ is the parameter vector. As is well known, the posterior is proportional to the product of the likelihood 3

of the sample, f (y|θ), and the prior, π(θ), so a Bayesian analysis requires the likelihood function. Classical statisticians often 4

use themaximum likelihood (ML) estimator, because of its desirable property of asymptotic efficiency. For both approaches, 5

the likelihood function is needed. However, there aremany areas of research involving complexmodels where computation 6

of the likelihood function is not possible, or is extremely expensive, effectively ruling out ordinary Bayesian methods and 7

ML estimation. 8

Much research in the last several decades, both classical and Bayesian, has been focused on providing alternatives. In 9

the classical framework, and among other approaches, the Generalized Method of Moments (GMM; Hansen, 1982) is based 10

on a vector of moment conditions m(θ, y) that are assumed to have expectation equal to zero under the true model. A 11

common way to define moments first defines a vector of statistics Z , a mapping operating on Y , Z = Z (Y ), with sample 12

realization z = Z(y). Let Eθ [Z] be the expectation of Z under themodel andm(θ, y) = z−Eθ [Z] be themoment restrictions 13

implied by the model; by construction, these moments have expectation zero when θ = θ0, where θ0 is the true parameter 14

value. Approximate Bayesian Computing (ABC) is a set of methods that attempts to use Bayesian ideas when the likelihood 15

function of the sample is not available, but the model is simulable. An important part of this literature (e.g., Beaumont et al., 16

2009; Fearnhead and Prangle, 2012; Blum et al., 2013) focuses on the posterior of the parameter conditional on a statistic, 17
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f (θ |z). In both areas, use of a statistic offers the simple advantage of feasibility, as well as computational advantages, due to1

the reduction of the dimensionality of the problem from dim Y to dim Z . The cost is a possible loss of statistical efficiency,2

compared to what would obtain were the likelihood function available.3

It iswell known that the asymptotic distributions of GMMestimators depend crucially on the specific Z that is chosen.We4

know that adding statistics to a baseline set will not cause the asymptotic variance of the GMM estimator to increase, which5

might cause one to think that selection of statistics is not important, and that when in doubt, additional statistics should be6

included. However, use of weakly informative moment conditions can lead to very poor small sample performance of the7

GMM estimator (e.g., Tauchen, 1986; Stock et al., 2002). In some cases, the model can give strong guidance regarding what8

moments to use for estimation, but in others, the choice is not clear, and a researcher may need to select which moments9

to use from a set that may include weakly informative and uninformative moments. These issues are also relevant for ABC10

with the posterior distribution f (θ |z) in general being sensitive to the choice of the summary statistics. From a frequentist11

point of view, ABC is first order asymptotic equivalent to the efficient GMM estimator based on m(θ, y) = z − Eθ [Z] (see12

Creel and Kristensen, 2013 and Forneron and Ng, 2015), so the above cited results for moment selection also apply to ABC.13

Gao and Hong (2015) show how ABC-type ideas can be employed to compute Bayesian versions of GMM estimators in a14

general setting.15

Thus, an important part of implementing GMM and ABC is the choice of the statistics Z . Systematic methods for selection16

of statistics have received a good amount of attention in both the ABC and GMM literatures. Within the ABC literature, Blum17

et al. (2013) provide a review of this work, with some new results based on use of regularizationmethods. Themethods that18

have been used fall into three classes: best subset selection; projection methods that define new statistics by combining19

statistics in some way to reduce dimension; and regularization techniques such as ridge regression.20

This paper adds to this literature by proposing a simple cross validation method for selecting statistics from a possibly21

large collection of candidate statistics, denoted W , assuming that the model is simulable. The method lies in the best22

subset selection classification of Blum et al. (2013): By searching over the candidate statistics using the simulated annealing23

algorithm, it provides a systematicmethod of dealingwith the problemof a potentially large set of candidate statistics, while24

limiting computational cost. One of the examples presented below has 56 candidate statistics, so the number of possible25

combinations to search over, 256, is more than 70,000 million millions. Specifically, selection of statistics is investigated26

based on the idea of minimization of an integrated version of Bayes expected loss,

L (E [Θ|Z = z] − θ) f (z|θ)π(θ)dzdθ27

for some loss function L, with respect to all subsets of statistics, Z , of W . Here, E [Θ|Z = z] is the posterior mean, f (z|θ) is28

the density of the statistic conditional on the parameter, and π(θ) is the prior. The integrated Bayes expected loss cannot29

be computed analytically, but can easily be approximated through simulations as demonstrated in the following. The use of30

Bayes expected loss in a decision theoretic framework is quite standard, but there, one usually conditions on the particular31

outcome z that has been observed. Here, on the other hand, we choose to integrate over all possible outcomes with weights32

assigned by their likelihoods; this is meant to reflect that we are interested in identifying a universal (‘‘global’’) set of33

sufficient statistics that work well for the given model irrespectively of the particular outcome observed. Moreover, this34

integrated version of Bayes expected loss proves to be simpler to estimate compared to the conditional version.35

The above selection rule aims atminimizing the loss of the posteriormean. If the interest lies in thewhole posterior distri-36

bution, and not just its mean, we show how our method is easily adjusted so as to minimize the integrated Kullback–Leibler37

distance of the posterior density for a given set of summary statistics w.r.t. z. This version of our selection procedure chooses38

the set of summary statistics that maximizes the information content over the whole distribution and so is similar in spirit39

to the one of Barnes et al. (2012). However, the procedure of Barnes et al. (2012) only performs a partial search over the set40

of candidate statistics, while our algorithm does a full search.41

From a frequentist point of view, E [Θ|Z = z] can be interpreted as a point estimator of the true data-generating value;42

using of the posteriormean as an estimator is defensible by the first order asymptotic equivalence of the posteriormean and43

the efficient GMM estimator (Chernozhukov and Hong, 2003; Creel and Kristensen, 2013). Our procedure can therefore be44

thought of as minimizing Bayes Risk, which again is a well-known object in decision theory, of this estimator. Thus, our pro-45

cedure also applies to simulation-based GMM estimators, including the method of simulated moments (McFadden, 1989),46

indirect inference (Smith, 1993; Gouriéroux et al., 1993), and the efficient method of moments (Gallant and Tauchen, 1996).47

The specific procedure that we propose for computing the integrated Bayes expected loss computation requires that the48

model of interest is simulable. This, in general, requires a fully specified model. Thus, the implementation of our procedure49

would have to be modified in order to use it for selection of moments in GMM estimation of models that are only partially50

specified.51

In comparison to existingmethods developed in the ABC literature, our proposal has the advantage that it provides a uni-52

versal search over all possible candidate sets of statistics. In contrast, most competingmethods either rely on fairly complex53

step-up procedures, where one statistic is added at a time, or on the construction of approximately optimal statistics. These54

methods tend to be more complex to implement and require much computational effort to achieve a solution that is stable55

across repeated runs. In contrast, our method is relatively simple to implement and tends to converge quite quickly. We in-56

vestigate the performance of the proposed method through two examples, and in both cases our procedure performs well.57

The first example takes the form of a linear regression model, where the optimal statistics are known, and thus it provides58

a good testing ground for our procedure. We show that our method can identify these statistics quite rapidly and does so59

robustly across many simulated samples. This simple test problem should be of independent interest since it might be used60

by proponents of other methods to evaluate performance and to allow comparison of computational demands. The second61
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