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a b s t r a c t

A dynamic copula model is introduced, in which the copula structure is inferred from the
realized covariancematrix estimated fromwithin-day high-frequency data. The estimation
is carried out in a method-of-moments fashion using Hoeffding’s lemma. Applying this
procedure day by day gives rise to a time series of daily copula parameters which can
be approximated by an autoregressive time series model. This allows one to capture
time-varying dependence. In an application to portfolio risk-management, it is found that
this time-varying realized copula model exhibits very good forecasting properties for the
one-day ahead value at risk.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Realized variance (RV) and realized covariance (RCov) estimated from high-frequency intraday data have proved to be
accurate ex-post measures for conditional variance and conditional covariance of daily returns. Nonparametric in nature,
RV and RCov permit the econometrician to obtain proxies for financial (co)volatility without having to specify a priori an
explicit and potentially misspecified volatility model (Andersen et al., 2001a,b). This insight has spurred intensive research
in the field and has led to widespread use of measures of RV and RCov in numerous applications in finance, such as asset
pricing, portfolio optimization, risk management, and volatility forecasting.

The present article continues this agenda. We estimate RCov matrices from high-frequency intraday data and take them
as ex-post proxies for daily conditional covariance.We complement these estimates bymaking assumptions on themarginal
distributions of daily returns and the copula associated with their joint multivariate distribution. Based on these assump-
tions,we estimate the copula shape parameters bymeans of a covariancemoment condition provided byHoeffding’s lemma.
The procedure yields estimates of daily copula shape parameters as materialized in RCov. The resulting time series of RCov-
implied copula shape parameters is subsequently modeled by standard time series techniques, thereby allowing the depen-
dence structure to be time-varying with the business cycle. We therefore call our approach the realized copula (RCop)model.

For risk-management purposes at a daily frequency, the benefits of using copulae to capture salient features of
multivariate dependence are widely recognized; see Jin (2010) and references therein. Yet, purely RV-based models often
work with a conditional multivariate Gaussian structure. The RCop model allows to drop this restrictive setting and offers a
more realistic description of the tails of the daily return distribution. It may therefore yield more accurate estimates of the
quantiles of a portfolio’s profit and loss distribution. Our application to forecasting the value at risk of two equity portfolios
confirms this expectation.
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In this research, we build on several strands of literature. The first strand is a series of studies in the RV literature
extending the univariate heterogeneous autoregressive (HAR) model to the multivariate level. The HAR model, originally
suggested by Corsi (2009), is a stationary, restricted AR(22) model that captures the long-range dependence in RV data by
means of a cascade of volatility components, which are interpreted as a daily, weekly, and monthly volatility component.
Today, it is a standard benchmark for modeling RV with unrivaled forecasting performance; see Corsi et al. (2012) for a
review. As an alternative to the HARmodel, pure long-memorymodels belonging to the ARFIMA class have been considered
for modeling RV, but their forecasting performance is close to that of HAR-type models; see Baillie (1996), Baillie et al.
(1996), Andersen et al. (2003), among others. A nontrivial challenge in constructing a multivariate HAR model for RV, i.e., a
RCov model, is to ensure positive-definiteness of predicted covariance matrices. A number of avenues have been pursued
concurrently. First, one considers modeling nonlinear transformations of RCov; examples include the Fisher transformation
as in Audrino and Corsi (2010), the Cholesky factorization as in Chiriac and Voev (2011), or the matrix log transformation
as in Bauer and Vorkink (2011). Second, one models the time series of realized covariances by means of a Wishart process;
see Gouriéroux et al. (2009), Bonato et al. (2012), Golosnoy et al. (2012), Jin and Maheu (2012). Third, one may follow the
routes of multivariate GARCH and DCC models such as suggested in Colacito et al. (2011), Hansen et al. (2011b), Noureldin
et al. (2012), and Bauwens et al. (2012). A fourth strand employs classical factor models; see Hautsch and Kyj (2010)
and Bannouh et al. (2012). The RCop model is in the spirit of this research, since the copula parameter, which we infer
from RCov and subsequently describe by a time series model, defines – together with the assumptions on the marginals – a
multivariate distribution and consequently a well-posed covariance matrix.

The second stream of research our work is related to is the growing literature of dynamic copula models, such as Dias
and Embrechts (2004) and Patton (2004, 2006), Chen and Fan (2006), Jondeau and Rockinger (2006), Giacomini et al. (2009),
Jin (2010), Christoffersen et al. (2011), Hafner and Manner (2012), Creal et al. (2013), and Härdle et al. (2013). Common
to all these approaches is the notion of a copula structure that has time-varying parameters driven by past realizations
of the underlying data generating process or by additional exogenous variables such as a latent state factor. By exploiting
intra-day data, we uncover a daily time series of implied copula parameters which we model by formulating a time series
model. We thus obtain a dynamic conditional copula model for daily returns, where time-variation is governed by the
underlying dynamics of RCov measures.

Remarkably, the literature using copulae to model dependency in the context of high-frequency data is scarce. In two
early studies, Breymann et al. (2003) and Dias and Embrechts (2004), a copula is directly applied to analyze intraday returns.
This is not the purpose of the present investigation. As in De Lira Salvatierra and Patton (2013), our aim is to exploit the
intraday information as condensed in the RVmeasure to improve the modeling of daily returns within a copula framework.
In this sense, we follow recent suggestions by Engle and Gallo (2006), Shephard and Sheppard (2010), Hansen et al. (2012),
and Hansen et al. (2011b) that combine both low and high-frequency observations in the fashion of GARCH models to
describe returns at daily frequency.

The paper is organized as follows. In Section 2, we introduce the RCop model and discuss estimation. The competitor
models, which we use for the comparative risk management study, are presented in Section 3. In Section 4, we compare the
empirical properties of all models out-of-sample by assessing their one-day ahead value at risk predictions on two portfolios
of heavily traded US stocks. Section 5 concludes.

2. The realized copula model

2.1. Estimation of copula parameter implied by realized variance

Copulae have emerged as a convenient way to construct multivariate distributions since they allow a strict separation
of the marginal distributions from cross-sectional dependence, which is captured by the copula function; see Joe (1997),
Nelsen (2006) and Jaworski et al. (2013) for an introduction to copulae. The main result due to Sklar (1959) states that if F is
an arbitrary d-dimensional continuous distribution function of the random variables X1, . . . , Xd, then the associated copula
is unique and defined as a continuous function C : [0, 1]d → [0, 1] satisfying the equality

C(u1, . . . , ud) = F{F−1
1 (u1), . . . , F−1

d (ud)}, u1, . . . , ud ∈ [0, 1], (1)

where F−1
1 , . . . , F−1

d are the quantile functions of the corresponding marginal distributions F1, . . . , Fd. If F belongs to the
class of elliptical distributions, this results in a so-called elliptical copula. Most elliptical copulae, however, cannot be given
explicitly, because the distribution function F and the inversemarginal distributions Fi usually have integral representations.

A class of copulae overcoming this drawback is the class of Archimedean copulae

Cθ (u1, . . . , uk) = φθ {φ
−1
θ (u1) + · · · + φ−1

θ (ud)}, u1, . . . , ud ∈ [0, 1], (2)

where φθ : [0, ∞) → [0, 1], with φθ (0) = 1, φθ (∞) = 0. The function φθ is called the generator of the copula, and
it usually depends on a single parameter θ . The generator φθ is required to be d-monotone, i.e., differentiable up to the
order d − 2, with (−1)jφ(j)

θ (x) ≥ 0, j = 0, . . . , d − 2, for any x ∈ [0, ∞) and with (−1)d−2φ
(d−2)
θ (x) being nondecreasing

and convex on [0, ∞); see McNeil and Nešlehová (2009). We present some examples of Archimedean copulae and their
generators in Table 1; see Nelsen (2006) for more details.
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