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a b s t r a c t

A novel approach to conditional covariance modelling is introduced in the context of mul-
tivariate financial time series analysis. In particular, a class of multivariate generalized au-
toregressive conditional heteroscedasticity models is proposed. The suggested modelling
technique is based on a specific dynamic orthogonal transformation derived by the LDL
factorization of the conditional covariance matrix. An observed time series is transformed
into a particular form that can be further treated by means of a discrete-time state space
model under corresponding assumptions. The calibration can be performed by the associ-
atedKalman recursive formulas,which are numerically effective. The introducedprocedure
has been investigated by extensiveMonte Carlo experiments and empirical financial appli-
cations; it has been compared with other methods commonly used in this framework. The
outlined methodology has demonstrated its capabilities, and it seems to be at least com-
petitive in this field of research.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Analysis of conditional covariances and correlations is undoubtedly an important part of multivariate financial time
series modelling. From a general theoretical perspective, examining a time-varying behaviour of conditional covariances
with eventual regard to modelling conditional correlations is indeed worth of interest. One can primarily mention at least
two reasons amongst others. Firstly, financial time series generally require applying specific model concepts that respect
their special character. For instance, various (multivariate) GARCH processes can be highlighted here. Secondly, several
constraints are naturally connected with the considered quantities of interest. In greater detail, the conditional covariance
(correlation) matrix must be symmetric and positive definite. Additionally, the conditional correlation matrix must have
unit diagonal elements. Indisputably, such requirements might bring tough limitations into calibration, especially in the
case of higher dimensions. Therefore, such restrictions must be seriously taken into account, e.g. by implementing various
representations which simplify or completely eliminate them, see below.

Modelling conditional correlations is inherently linked to modelling conditional covariances. In general, one can
essentially distinguish between two approaches: (i) the direct one, where amodel representation of conditional covariances
involves an explicit expression of conditional correlations, and (ii) the indirect one, where conditional correlations are
indirectly calculated as normalizations of conditional covariances.

Moreover, the introduced topic is also worth of interest from the practical point of view. Particularly, conditional
correlations are crucial inputs for many tasks of technical analysis or financial, portfolio, and risk management, e.g. an asset
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allocation, a construction of an optimal portfolio, or a hedging problem. The relevance of the discussed issue is evident
from the substantial body of literature in this research field. Many academically or practically oriented publications treat
this topic from many viewpoints. In particular, see the works by Bollerslev (1990), Engle (2002), Bauwens et al. (2006),
Engle and Colacito (2006), Engle (2009), Alp and Demetrescu (2010), Rossi and Spazzini (2010), Aielli (2011), or Hafner and
Reznikova (2012), and the references given therein.

In this article, a class of multivariate generalized autoregressive conditional heteroscedasticity models is proposed. The
suggested technique is rested on a specific time-varying orthogonal transformation delivered by the LDL decomposition
of the conditional covariance matrix. This transformation decomposes multivariate time series; therefore, it enables to
apply the instruments of the linear discrete-time state spacemethods under somemodelling circumstances. In addition, the
corresponding Kalman recursions provide a numerically effective way of calibration. Furthermore, the introduced approach
is primarily studied in the context of conditional correlations (compare with Engle, 2002). Its performance is analysed by
means of a simulation study and empirical applications.

The paper is organized as follows. Section 2 introduces a general multivariate model framework. It can be regarded
as a straightforward analogy of univariate conditional heteroscedastic models. Section 3 presents the proposed modelling
technique in detail. Section 4 briefly surveys other estimators of conditional covariances. Section 5 describes a Monte Carlo
study, which compares the accuracy of the introduced technique with others. Section 6 investigates two different empirical
examples: (i) the first one studies bivariate correlations between stocks and bonds, (ii) the second one analyses correlation
links in a portfolio of six European currencies. Finally, Section 7 contains conclusions.

2. Model framework

Consider a multivariate stochastic vector process {Xt}t∈Z of dimension (n × 1). Denote Ft the σ -algebra generated by
observed time series up to and including time t , i.e. Ft = σ(Xs, s ≤ t) is the smallest σ -algebra with respect to which Xs is
measurable for all s ≤ t , s, t ∈ Z.

In this framework, assume the following model

Xt = H1/2
t Zt , (1)

where Ht = (hij,t)
n
i,j=1 is the (n × n) positive definite conditional covariance matrix of Xt given Ft−1. Furthermore, one

supposes that {Zt} is an (n × 1) i.i.d. stochastic vector process with the moments E(Zt) = 0 and cov(Zt) = In, where In
denotes the identity matrix of order n.

In the model (1), the conditional and unconditional moments of Xt can be easily calculated:

E(Xt |Ft−1) = 0, cov(Xt |Ft−1) = H1/2
t (H1/2

t )⊤ = Ht , (2)

E(Xt) = 0, cov(Xt) = E(Ht), cov(Xt ,Xt+h) = 0, h ≠ 0. (3)

Apparently,H1/2
t is any (n×n) positive definitematrix such thatHt is the conditional covariancematrix ofXt givenFt−1. The

considered decomposition ofHt may be delivered e.g. by the Cholesky factorization as it is common in the literature, see e.g.
Engle (2002). Moreover, Rt (the conditional correlation matrix of Xt given Ft−1) can be obtained by a simple normalization
of the conditional covariance matrix.

3. Conditional covariances via state space modelling

Following the algebraic theory, each real symmetric positive definite matrix has a unique LDL decomposition (Harville,
1997). Let the conditional covariance matrix Ht have the LDL reparameterization in its standard form, i.e.

Ht = LtDtL⊤

t [= (LtD
1/2
t )(LtD

1/2
t )⊤ = H1/2

t (H1/2
t )⊤], (4)

where Lt = (ℓij,t)
n
i,j=1 is an (n× n) lower triangular matrix with the unit diagonal and Dt is an (n× n) diagonal matrix with

positive elements dii,t on its diagonal. In particular, det(Lt) = 1, Lt is invertible, and the inverted matrix L−1
t = (ℓ

ij
t )

n
i,j=1 is

also an (n × n) lower triangular matrix with unit diagonal elements. It is noteworthy that the decomposition (4) requires
no parameter constraints for Ht being symmetric and positive definite since this is guaranteed by the LDL structure.

The LDL factorization (4) delivers uniquely determined recurrent relations for the elements of Lt and Dt (Harville, 1997).
One can easily derive the following formulas for conditional covariances and correlations:

hii,t = var(Xi,t |Ft−1) =

i
v=1

ℓ2
iv,tdvv,t , i = 1, . . . , n, (5)

hij,t = cov(Xi,t , Xj,t |Ft−1) =

j
v=1

ℓiv,tℓjv,tdvv,t , for j < i, i = 2, . . . , n, (6)
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