
Computational Statistics and Data Analysis ( ) –

Contents lists available at ScienceDirect

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda

Testing for the number of states in hidden Markov models
Hajo Holzmann ∗, Florian Schwaiger
Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Hans-Meerwein-Str., D-35032 Marburg, Germany

a r t i c l e i n f o

Article history:
Received 20 August 2013
Received in revised form 8 June 2014
Accepted 10 June 2014
Available online xxxx

Keywords:
Finite mixtures
Hidden Markov models
Hypothesis testing
Volatility states
Financial time series

a b s t r a c t

Scale mixtures of normal distributions are frequently used to model the heavy tails of
asset returns. A simple specification is a three component scale mixture, where the states
correspond to high, intermediate and low volatility phases of the market. Tests for the
number of states in hidden Markov models are proposed and used to assess whether in
view of recent financial turbulences, three volatility states are still sufficient. The tests
extend tests for independent finite mixtures by using a quasi-likelihood which neglects
the dependence structure of the regime. The main theoretical insight is the surprising
fact that the asymptotic distribution of the proposed tests for HMMs is the same as for
independent mixtures with corresponding weights. As application the number of volatility
states for logarithmic returns of the S&P 500 index in two HMMs is determined, one with
state-dependent normal distributions and switching mean and scale, and the other with
state-dependent skew-normal distributions with switching scale and structural mean and
skewness parameters. It turns out that in bothmodels, four states are indeed required, and a
maximum-a-posteriori analysis shows that the highest volatility state mainly corresponds
to the recent financial crisis.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The mixture of distributions hypothesis for asset returns refers to specifications for which the marginal distribution
of the returns is a scale-mixture of a standard, most often the normal distribution; see Shephard and Andersen (2009).
A simple version is a finite scale-mixture of normal distributions, as proposed in Kon (1984), typically with three states
corresponding to high, intermediate and low volatility. In order to induce volatility clustering one additionally requires
positive serial correlation of the latent scale process, e.g. via a stationary finite-stateMarkov chainwith high diagonal entries;
see Rydén et al. (1998). For the resulting class of processes, called hidden Markov models (HMMs), we shall propose tests
with a tractable asymptotic distribution for the number of states of the underlying unobserved regime. As application, we
investigate whether in view of recent financial turbulences, three volatility states are still sufficient.

Formally, an HMM is a bivariate process (St , Xt)t≥1, where (St)t≥1 is an unobservable, finite-state Markov chain and
(Xt)t≥1 is the observable process with values in some Borel-subset of a Euclidean space, which are related as follows. Given
(St)t≥1, the (Xt)t≥1 are conditionally independent, and for each t ≥ 1, the conditional distribution of Xt depends on St
only. The unobservable Markov chain is also called the regime or the latent process of the HMM. We shall assume that (St)
is stationary and ergodic with state space M = {1, . . . , k}, so that the stationary distribution π = (π1, . . . , πk) of the
associated transition matrix γlm = P(St+1 = m|St = l), l,m ∈ M, is uniquely determined.

The conditional distributions of Xt given St = l, l = 1, . . . , k, called the state-dependent distributions, are assumed to
have densities f (·, ν, ϑl) from some parametric family w.r.t. some σ -finite measure. Thus, ν ∈ Θ1 ⊂ Rd1 is a structural
parameter and ϑl ∈ Θ2 ⊂ Rd2 is state-dependent.
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HMMs provide a flexible and very widely used class of models for dependent data, in particular in the presence of
overdispersion (for series of count data) or unobserved heterogeneity; see the monographs by Zucchini and MacDonald
(2009) for further examples of applications, and by Cappé et al. (2005) for a state-of-the-art overview of theoretical
developments for HMMs. In order to model further stylized facts of asset-return series, various more general latent-state
models were proposed, including hidden semi-Markov models (see Bulla and Bulla, 2006), switching GARCH models (see
Augustyniak, 2014) as well as multivariate time-series models with switching dependence structure (see Stöber and Czado,
2014); see also Cappé et al. (2005) for an overview.

In statistical applications of HMMs, the selection of the number of states k of the latent process is a task of major
importance. To this end, in certain models for fixed k0 ∈ N we shall propose tests for the hypothesis

H0 : k = k0 against H1 : k > k0.

Since Gassiat and Keribin (2000) show that the LRT statistic for testing k = 1 against k ≥ 2 for an HMM diverges to ∞, we
shall follow the quasi-likelihood-based approach in Lindgren (1978) and Dannemann and Holzmann (2008) and proceed via
the marginal finite mixture.

Specifically, we use the testing approaches for the number of states in a finite mixture by Chen et al. (2012) for normal
state-dependent distributions with switching means and scales, as well as that by Li and Chen (2010) for a univariate
switching parameter, extended to allow for nuisance parameters. Our main theoretical insight is the surprising fact that
the asymptotic distribution of these tests for HMMs is the same as for independent mixtures with corresponding weights.
Thus, our results also state that existing tests for independent mixtures are indeed robust against Markov-dependence in
the regime.

The structure of the paper is as follows. In Section 2 we develop the relevant testing methodology. Section 3 contains
results of an extensive simulation study.

As application, in Section 4 we determine the number of volatility states for logarithmic returns of the S&P 500 index
in two HMMs, one with state-dependent normal distributions and switching mean and scale, and the other with state-
dependent skew-normal distributions with switching scale and structural mean and skewness parameters. It turns out that
in bothmodels, four states are indeed required, and amaximum-a-posteriori analysis shows that the highest volatility state
mainly corresponds to the recent financial crisis.

Appendix A contains a proof of themain insight that the asymptotic distribution of the test by Li and Chen (2010) remains
the same for HMMs as for independent finite mixtures. In the supplementary material in Holzmann and Schwaiger (2014),
additional simulation results as well as technical details are provided (see Appendix B).

2. Quasi-likelihood-based estimation and testing

In this section we present the statistical methodology. Section 2.1 introduces quasi-likelihood estimation for HMMs.
Sections 2.2 and 2.3 contain the test statistics for the number of states together with their asymptotic distributions for
normal HMMs as well as HMMswith univariate switching parameter, respectively. Section 2.4 contains a discussion, where
we compare the test statistics and give intuition for their quite distinct asymptotic distributions and relate the results to the
literature.

2.1. Quasi-likelihood estimation

Following Lindgren (1978) and Dannemann and Holzmann (2008), we consider a quasi-log-likelihood which neglects
the dependence in the regime. For a given number of states k, set θ = (νT , ϑT
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The quasi-maximum-likelihood estimator (QMLE) is then given by
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As above, we shall most often suppress the number of components k in the notation for simplicity and only indicate it
if confusion might arise otherwise. We are mainly interested in two specific situations, for which we extend the testing
methodology for mixtures to the case of HMMs.

Normal HMMs. One of the most important classes of HMMs are those with normal state-dependent distributions. If both
mean µ and variance σ 2 are allowed to switch, we have that fXt |St=j(x) = φ(x; µj, σj), j = 1, . . . , k, where φ denotes
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