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a b s t r a c t

A multivariate stochastic volatility model with the dynamic correlation and the cross
leverage effect is described and its estimation usingMarkov chainMonte Carlo is proposed.
The time-varying covariance matrices are guaranteed to be positive definite by using a
matrix exponential transformation. Of particular interest is our approach for sampling a
set of latentmatrix logarithmvariables from their conditional posterior distribution,where
we construct the proposal density based on an approximating linear Gaussian state space
model. The proposedmodel and its extensionswith fat-tailed error distribution are applied
to trivariate returns data (daily stocks, bonds, and exchange rates) of Japan. Further, amodel
comparison is conducted including constant correlation multivariate stochastic volatility
models with leverage and diagonal multivariate GARCH models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Over the last several decades, there has been a great deal of interest in modeling volatilities of multivariate stock market
returns. The examples are multivariate generalized autoregressive conditional heteroskedasticity (GARCH) models (see the
review of Bauwens et al., 2006), multivariate stochastic volatility (SV) models (see the review of Asai et al., 2006, Chib et al.,
2009) and realized covariancemodels (see e.g. Golosnoy et al., 2012). The realized covariancemodel uses the high-frequency
data to estimate covariance matrices and regard them as observed covariance matrices, while they are latent variables in
GARCH and SV models.

Various multivariate volatility models have been proposed in the literature to describe the dynamic properties of
the covariance matrices such as the volatility clustering, the dynamic correlations, and the leverage effects. The DCC
models (Engle, 2002) and BEKK models (Engle and Kroner, 1995) are examples in multivariate GARCH models. In the
multivariate SV models, it is difficult to keep the covariance matrices positive definite. To overcome this difficulty, several
reparameterizationmethods are considered in Yu andMeyer (2006), Tsay (2005), and Jungbacker and Koopman (2006). The
Cholesky decomposition of the covariancematrix is also considered in Lopes et al. (2012) and Loddo et al. (2011). Alternative
approaches using Wishart process are also proposed for both GARCH and SV models with or without realized covariance
matrices (Philipov and Glickman, 2006; Gourieroux et al., 2009; Golosnoy et al., 2012; Jin and Maheu, 2013).

However, there have been still few previous works on the multivariate volatility models with both dynamic correlations
and cross leverage effects. Cross leverage refers to the correlation between the ith asset return at time t and the function
of jth asset volatility at time t + 1 (when i = j, we simply call it a leverage effect). Thus, to model these properties of
covariance matrices, this paper considers the matrix logarithm transformation which is known useful to model positive
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definite matrices in a flexible way. Since the seminal work of Chiu et al. (1996), the matrix exponential model for the
covariance matrix has been applied to the spatial model to simplify the calculation of log-likelihood functions (LeSage and
Pace, 2007), and is extended to the GARCH model (Kawakatsu, 2006), the SV model (Asai et al., 2006) and the realized
covariation model (Bauer and Vorkink, 2010; Sheppard, 2007) for multivariate financial time series.

We consider the general multivariate volatility model using the matrix exponential SV model with cross leverage effects
and propose a computational algorithm. This is a generalization of Ishihara and Omori (2012) who propose the following
multivariate stochastic volatility (MSV) model with cross-asset leverage effect of the form

yt = diag

exp(α1t/2), . . . , exp(αpt/2)


εt , (1)

αt+1 = 8αt + ηt , (2)
ε′t , η

′

t

′
∼ N2p(0, 6), (3)

where yt = (y1t , . . . , ypt)′, αt = (α1t , . . . , αpt)
′, 8 = diag(φ1, . . . , φp) and Np(µ, 6) denotes the p-dimensional normal

distribution with mean µ and variance 6. This is fairly general in the sense that there is no restriction imposed on the co-
variancematrix6, while, in the previous literature, various parameter restrictions are imposed (e.g. Asai andMcAleer, 2006,
Asai andMcAleer, 2009, Chan et al., 2006, andDaníelsson, 1998) to estimate parameters based on theMonte Carlo likelihood.
We, further, model the dynamic covariance matrices (dynamic variances and correlations) using a matrix logarithm trans-
formation. Since it is difficult to implement a maximum likelihood estimation for our proposedmodel without imposing re-
strictions on parameters, we take the Bayesian approach and estimate posterior distributions ofmodel parameters using the
Markov chainMonte Carlo (MCMC)method. It is well-known thatMCMC algorithms sometimes suffer from the sampling in-
efficiency problem in stochastic volatilitymodels. As discussed in Ishihara and Omori (2012), the simple sampling algorithm
for the latent covariancematrices is found to be inefficient in the sense that the generatedMCMC samples of latent volatility
variables are highly autocorrelated. They showed that the single-move sampler which samples one volatility variable given
others is highly inefficient and proposed the efficient multi-move sampler (block sampler) which divides the vector of all la-
tent variables into blocks and samples one block given other blocks based onOmori andWatanabe (2008). Thuswe construct
the multi-move sampler for our matrix exponential model and compare with the alternative simple sampling algorithm.

The rest of the paper is organized as follows. In Section 2, we introduce a matrix exponential stochastic volatility model
with cross leverage effects. The Bayesian estimation method and the associated particle filter for calculating likelihood
functions are described in Section 3. And in Section 4, the empirical studies are given using the trivariate asset returns data
(stock indices, bond indices and foreign exchange rates).We conduct amodel selection among the proposedmodel, extended
models with fat-tailed error distribution, some constant correlation multivariate SV models, and some diagonal BEKK
models. Section 5 concludes the paper. The efficiency of our proposed algorithm using the simulated data is investigated in
the working paper version.

2. Matrix exponential stochastic volatility

This section proposes the matrix exponential stochastic volatility (MESV) model with cross leverage effects. The
MESV model is based on the matrix exponential transformation as below. A matrix exponential is widely studied in the
context of multidimensional differential equations and Lie algebra. The statistical applications of the matrix exponential
transformation are given, for example, in Chiu et al. (1996), and Kawakatsu (2006). For any p × p matrix A, the matrix
exponential is defined by the following power series expansion

exp(A) ≡

∞
s=0

1
s!
As,

where the series converges absolutely if all eigenvalues of A are finite. (See e.g. Abadir and Magnus, 2005 for various
properties of the matrix exponential transformation.) For any real symmetric positive definite matrix C, there exists a real
symmetric p × p matrix A such that C = exp(A), and the matrix A is obtained by the matrix logarithm transformation.
Conversely, for any real symmetric matrix A, C = exp(A) is a symmetric positive definite matrix (Chiu et al., 1996). If A is a
p× p real symmetric matrix, there exists a p× p orthogonal matrix U and a diagonal matrix 3 such that A = U3U′ and

exp(A) = U


∞
s=0

1
s!

3s


U′ = U exp(3)U′.

Now let yt = (y1t , . . . , ypt)′ denote the p-dimensional asset return vector at time t , and let Ht denote the matrix logarithm
of the variance–covariance matrix of yt . The MESV model with leverage effects is given by

yt = exp(Ht/2)εt , εt ∼ i.i.d. Np(0, Ip), t = 1, . . . , n. (4)

Ht+1 = M+ 8̃⊙ (Ht −M)+ Et , (5)
εt
ηt


∼ i.i.d. Np+q(0, 6), 6 =


Ip 6εη

6ηε 6ηη


, t = 1, . . . , n− 1, (6)

h1 ∼ Nq (µ, 60) , (7)
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