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a b s t r a c t

Given time series data X1, . . . , Xn, the problem of optimal prediction of Xn+1 has beenwell-
studied. The same is not true, however, as regards the problem of constructing a prediction
interval with prespecified coverage probability for Xn+1, i.e., turning the point predictor
into an interval predictor. In the past, prediction intervals have mainly been constructed
for time series that obey an autoregressive model that is linear, nonlinear or nonparamet-
ric. In the paper at hand, the scope is expanded by assuming only that {Xt} is a Markov
process of order p ≥ 1 without insisting that any specific autoregressive equation is satis-
fied. Several different approaches and methods are considered, namely both Forward and
Backward approaches to prediction intervals as combinedwith three resamplingmethods:
the bootstrap based on estimated transition densities, the Local Bootstrap for Markov pro-
cesses, and the novel Model-Free bootstrap. In simulations, prediction intervals obtained
fromdifferentmethods are compared in terms of their coverage level and length of interval.

© 2015 Published by Elsevier B.V.

1. Introduction

Prediction is a key objective in time series analysis. The theory of optimal – linear and nonlinear – point predictors
has been well developed. The same is not true, however, as regards the problem of constructing a prediction interval with
prespecified coverage probability, i.e., turning the point predictor into an interval predictor. Even in the related problem of
regression, the available literature on prediction intervals is not large; see e.g. Geisser (1993), Carroll and Ruppert (1991),
Olive (2007, 2015), Patel (1989), Schmoyer (1992), and Stine (1985). Recently, Politis (2013) has re-cast the prediction
problem – including prediction intervals – in a Model-Free setting.

An autoregressive (AR) time series model, be it linear, nonlinear, or nonparametric, bears a formal resemblance to the
analogous regression model. Indeed, AR models can typically be successfully fitted by the same methods used to estimate
a regression, e.g., ordinary Least Square (LS) regression methods for parametric models, and scatterplot smoothing for
nonparametric ones. There are several papers for prediction intervals for ARmodels (typically linear) that represent a broad
spectrum of methods; see e.g. Alonso et al. (2002), Box and Jenkins (1976), Breidt et al. (1995), Masarotto (1990), Pascual
et al. (2004), Thombs and Schucany (1990), and Wolf and Wunderli (2015).

Recently, Pan and Politis (in press) presented a unified approach towards prediction intervals when a time series {Xt}

obeys an autoregressive model that is either linear, nonlinear or nonparametric. We expand the scope by assuming only
that {Xt} is a Markov process of order p ≥ 1 without insisting that any specific autoregressive equation is satisfied. Recall
that Pan and Politis (in press) identified two different general approaches towards building bootstrap prediction intervals
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with conditional validity, namely the Forward and Backward recursive schemes.Wewill address both Forward and Backward
approaches in the setting of Markovian data; see Section 2 for details.

In terms of the actual resampling mechanism, we will consider the following three options:
1. The bootstrapmethodbased on kernel estimates of the transition density of theMarkov processes as proposed byRajarshi

(1990); see Section 3.
2. The Local Bootstrap for Markov processes as proposed by Paparoditis and Politis (1998; 2002); see Section 4.
3. The Model-Free Bootstrap for Markov Processes; this is a novel resampling scheme that stems from the Model-Free

Prediction Principle of Politis (2013). To elaborate, the key idea is to transform a given complex dataset into one that
is i.i.d. (independent, identically distributed); having done that, the prediction problem is greatly simplified, and that
includes the construction of prediction intervals. In the case of a Markov Process, this simplification can be accomplished
using the Rosenblatt (1952) transformation; see Section 6.

In the case of time series that satisfy an autoregressive equation that is nonlinear and/or nonparametric, Pan and Politis
(in press) noted that the Backward approach was not generally feasible. Recall that, under causality, AR models are special
cases of Markov processes. Hence, in Section 5 we propose a hybrid approach for nonparametric autoregressions in which
the forward step uses the autoregressive equation explicitly while the backward step uses one of the three aforementioned
Markov bootstrap procedures.

In the following, Section 2 will describe the setting of the prediction problem under consideration, and the construction
of bootstrap prediction intervals. All prediction intervals studied in the paper at hand are asymptotically valid under
appropriate conditions. We will assess and compare the finite-sample performance of all the methods proposed via Monte
Carlo simulations presented in Section 7. Appendix A is devoted to showing that a Markov process remains Markov after
a time-reversal; this is needed to justify the use of all Backward bootstrap approaches. Finally, Appendix B discusses the
problem of prediction intervals in r-step ahead prediction for r ≥ 1.

2. Prediction and bootstrap for Markov processes

2.1. Notation and definitions

Here, and throughout the rest of the paper, we assume that X = {Xt , t = 1, 2, . . .} is a real-valued, strictly stationary
process that is Markov of order p. Letting Yt = (Xt , Xt−1, . . . , Xt−p+1)

′, we define

F(y) = P[Yp ≤ y],
F(x, y) = P[Xp+1 ≤ x, Yp ≤ y],
F(x|y) = P[Xp+1 ≤ x|Yp = y],

(2.1)

for x ∈ R, y ∈ Rp; in the above, we have used the short-hand {Yp ≤ y} to denote the event {the ith coordinate of Yp is less
or equal to the ith coordinate of y for all i = 1, . . . , p}.

Let f (y), f (x, y), f (x|y) be the corresponding densities of the distributions in Eq. (2.1). We will assume throughout the
paper that these densities are with respect to Lebesgue measure. However, our results in Sections 3 and 4, i.e., bootstrap
based on estimated transition densities and Local Bootstrap, could be easily generalized to the case of densities taken with
respect to counting measure; i.e., the case of discrete random variables. Remark 6.4 shows a modification that also renders
the Model-Free bootstrap of Section 6 valid for discrete data.

Let X1 = x1, X2 = x2, . . . , Xn = xn denote the observed sample path from the Markov chain X , and let yn =

(xn, . . . , xn−p+1)
′. Denote by X̂n+1 the chosen point predictor of Xn+1 based on the data at hand. Because of the Markov

structure, this predictor will be a functional of f̂n(·|yn) which is our data-based estimator of the conditional density f (·|yn).
For example, the L2-optimal predictor would be given by the mean of f̂n(·|yn); similarly, the L1-optimal predictor would be
given by the median of f̂n(·|yn). To fix ideas in what follows will focus on the L2-optimal predictor, usually approximated by
X̂n+1 =


xf̂n(x|yn)dx, with the understanding that other functionals of f̂n(·|yn) can be accommodated equally well.

Remark 2.1. An integral such as

xf̂n(x|yn)dx can be calculated by numerical integration, e.g. using the adaptive quadrature

method. However, the L2-optimal predictor can be approximated in several different ways that are asymptotically
equivalent. The most straightforward alternative is a kernel smoothed estimator of the autoregression scatterplot,
i.e., estimator (5.3) defined in the sequel. Remark 6.2 lists some further alternative options.

Beyond the point predictor X̂n+1, we want to construct a prediction interval that will contain Xn+1 with probability 1−α
asymptotically; the following definition is helpful.

Definition 2.1 (Asymptotic Validity of Prediction Intervals). Let Ln, Un be functions of the data X1, . . . , Xn. The interval [Ln,Un]

will be called a (1 − α)100% asymptotically valid prediction interval for Xn+1 given X1, . . . , Xn if

P(Ln ≤ Xn+1 ≤ Un) → 1 − α as n → ∞ (2.2)

for all (X1, . . . , Xn) in a set that has (unconditional) probability equal to one.
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