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a b s t r a c t

The asymptotic properties of the Local Whittle estimator of the memory parameter d
have been widely analysed and its consistency and asymptotic distribution have been
obtained for values of d ∈ (−1/2, 1] in awide range of situations. However, the asymptotic
distribution may be a poor approximation of the exact one in several cases, e.g. with small
sample sizes or evenwith larger sampleswhen d > 0.75. In other situations the asymptotic
distribution is unknown, as for example in a noninvertible context or in some nonlinear
transformations of long memory processes, where only consistency is obtained. For all
these cases a bootstrap strategy based on resampling a (perhaps locally) standardised
periodogram is proposed. A Monte Carlo analysis shows that this strategy leads to a good
approximation of the exact distribution of the Local Whittle estimator in those situations
where the asymptotic distribution is not reliable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Longmemory is a common feature of many time series in areas as diverse as economics, finance, hydrology, climatology,
politics and network traffic. It means that observations which are far apart maintain a significant relationship such that the
autocorrelations are not summable. The non summability of the autocorrelations implies that the spectral density function
f (λ)diverges at the origin. In fact, themost commondefinition of longmemory is established by the behaviour of the spectral
density function around the origin such that it satisfies

f (λ) ∼ Cλ−2d as λ → 0, (1)

for a finite positive constant C , where a ∼ b means that a/b → 1. The memory parameter d governs the persistence of the
series. If d = 0 the series has short memory, whereas a value of d > 0 implies long memory or strong dependence such that
f (λ) diverges at λ = 0 and the autocovariances are not summable. Finally, the antipersistent case d < 0 entails a zero in
the spectral density function at the origin, usually caused by overdifferencing.

Knowledge of d provides useful information on many characteristics of the series and is of particular interest in a wide
range of situations. For example, a value d ≥ 1/2 implies that the series is nonstationary since f (λ), which in this case has
a pseudo spectral density interpretation, is not integrable, although mean reversion is possible as long as d < 1. Also, the
value of d of the cointegrating errors determines the degree of cointegration by comparison with the memory parameter of
the series in the cointegrating regression. As a third example, d can be interpreted as the degree of differentiation necessary
to reach a weak dependent stationary and invertible process in a context of fractional integration.
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Estimating d is thus of inherent importance. Parametric methods such as (quasi) maximum likelihood or the Whittle
approximation entail a risk of inconsistency if the model is misspecified, even if that misspecification occurs at frequencies
not affected by d. In order to avoid that risk, semiparametric or local techniques have been proposed, which only restrict
the behaviour of the spectral density around the pole as in (1). One of the most popular is the Local Whittle (LW) estimator,
which is the one with which we are concerned in this paper. It was first proposed by Künsch (1987) but it was not until
Robinson (1995) that its nice asymptotic properties were proved in the stationary and invertible case −1/2 < d < 1/2.
In particular Robinson showed consistency, pivotal asymptotic normal distribution and higher efficiency than other rival
techniques (such as log periodogram regression) under very mild conditions, allowing for non Gaussian series. Velasco
(1999), Phillips and Shimotsu (2004) and Shao and Wu (2007) extended the asymptotic properties of the LW estimator
to the nonstationary case, obtaining consistency for d ≤ 1 and asymptotic normality for d < 3/4. For larger values of d the
asymptotic distribution is non normal and the estimator is inconsistent for d > 1. These limitations have been overcome by
the Exact LW estimator of Shimotsu and Phillips (2005) and the Extended LW of Abadir et al. (2007), which are extensions
of the original LW estimation that preserve the asymptotic properties of the LW estimator with d < 3/4 for any value of d
with no loss of efficiency.

The standard asymptotic distribution of the LWestimator and its pivotal nature (at least for d < 3/4)makes it very simple
to implement asymptotic inference on the value of d. However the asymptotic distribution may be a poor approximation
of the exact one in moderately-sized samples or even in large samples if d ∈ (0.75, 1] (see Phillips and Shimotsu, 2004),
rendering inference based on asymptotic results rather unreliable. In other situations inference on the memory parameter
is not a feasible possibility because the asymptotic distribution of the LW estimator is unknown despite its consistency.
This is the case in noninvertible fractionally integrated processes (Shimotsu and Phillips, 2006) and in some nonlinear
transformations of long memory series (Dalla et al., 2005). In all these cases we propose to use a bootstrap method to
approximate the exact distribution of the LW estimator, which makes it possible to implement reliable inference on d.

The bootstrap was originally designed for samples of independent observations, but some refinements have been
proposed to deal with dependent data. In this context there are basically two approaches. One is based on describing
the dependence through a parametric model with independent disturbances. After the model is estimated the bootstrap
is implemented in the residuals, which are assumed to be close to being independent. The sieve bootstrap follows this spirit
but instead of identifying the correct model, an AR approximation of sufficiently high order is estimated to capture the
relevant dependence of the series. The second approach does not rely on a model but attempts to retain the structure of
dependence by resampling overlapping or nonoverlapping blocks of observations. This is the block bootstrap, designed to
maintain dependence inside the block while assuming independence between blocks.

The applicability of these traditional bootstrap methods to long memory series is influenced by the strong persistence of
the series and the absence ofmixing conditions, as analysed for example by Poskitt (2008) andKreiss et al. (2011) for the sieve
bootstrap and by Lahiri (1993) and Kim and Nordman (2011) for the block bootstrap (see also Murphy and Izzeldin, 2009).
To avoid these problems Kapetanios and Papailias (2011) propose fractionally differencing the series using a consistent
estimator of d prior to the application of a bootstrap strategy. If the estimate is close to the true value of d the bootstrap
is finally applied to a series that is close to being weak dependent. But an estimate far from the true d invalidates the
procedure since the bootstrap would have to be finally implemented in a long memory series regardless of the (incorrect)
prior differencing.

In the paper presented here we follow a different approach based on a bootstrap strategy in the frequency domain,
which is the context in which the LW estimator is defined. We take advantage of the fact that bootstrap approximations
to the distribution of the Local Whittle estimator do not need bootstrap samples of the original series; only resampling
of the periodogram is necessary. This implies that the problems originated by the strong dependence of the data are
partially avoided, since the transformation that leads to the periodogram entails a significantmodification in the structure of
dependence. For example, the periodogram ordinates of weak dependent series are asymptotically independent, regardless
of the dependence of the original series. However, periodogram ordinates of long memory series are not asymptotically
independent around the spectral pole and they show a marked structure (far from the periodogram of a white noise) that
would have to be replicated by the bootstrap samples. With that purpose, but in a weak stationary context, Paparoditis
and Politis (1999) adapt a local bootstrap suggestion introduced by Shi (1991) and set out to resample near periodogram
ordinates locally, thus retaining the global structure of the periodogram. Considering blocks of near periodogram ordinates
makes this strategy resemble the more traditional block bootstrap. But, whereas the block bootstrap is designed to
maintain the local structure by resampling blocks of observations while assuming independence between blocks, the local
bootstrap resamples periodogram ordinates within a block of neighbouring frequencies, keeping the global structure of the
periodogramunaltered. Thus, a local strategy seems to bemore adequate under longmemorywhere the periodogram shows
a marked structure. However, as noted by Silva et al. (2006), replication of this structure in the bootstrap samples compels
the use of a very narrow interval around the frequency of interest, which affects the performance of the bootstrap (in fact,
Silva et al., 2006 propose resampling within a neighbourhood of only one or two frequencies).

In order to avoid this limitation we follow Franke and Härdle (1992) and Dahlhaus and Janas (1996) who, dealing with
weak dependent series, propose resampling Studentised periodogram ordinates obtained by dividing the periodogram by
an estimate of the spectral density function, which implies smoothing the structure of the raw periodogram such that
the Studentised periodogram is closer to the periodogram of a white noise. In this context, the main challenge with long
memory series is to obtain an estimator of the spectral density that is consistent over the whole band of frequencies used
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