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a b s t r a c t

In the analysis of functional time series an object which has seen increased use is the long
run covariance function. It arises in several situations, including inference and dimension
reduction techniques for high dimensional data, and new applications are being developed
routinely. Given its relationship to the spectral density of finite dimensional time series,
the long run covariance is naturally estimated using a kernel based estimator. Infinite
order ‘‘flat-top’’ kernels remain a popular choice for such estimators due to their well
documented bias reduction properties, however it has been shown that the choice of
the bandwidth or smoothing parameter can greatly affect finite sample performance. An
adaptive bandwidth selection procedure for flat-top kernel estimators of the long run
covariance of functional time series is proposed. This method is extensively investigated
using a simulation study which both gives an assessment of the accuracy of kernel based
estimators for the long run covariance function and provides a guide to practitioners on
bandwidth selection in the context of functional data.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A commonway of obtaining functional data is to break long, continuous records into a sample of shorter segments which
may be used to construct curves. For example, tick data measuring the price of an asset obtained over several years, which
in principle may contain millions of data points, may be used to construct smaller samples of daily or weekly curves. Over
the last decade functional time series analysis has grown steadily due to the prevalence of these types of data; we refer to
Hörmann and Kokoszka (2012) and Horváth and Kokoszka (2012) for a review of the subject.

Suppose

Xi(t), 1 ≤ i ≤ n and t ∈ [0, 1] are observations from a stationary ergodic functional time series with E∥X0∥
2 < ∞,

(1.1)

where ∥ · ∥ denotes the standard norm in L2. An object which arises frequently in this context is the long run covariance
function

C(t, s) =

∞
i=−∞

Cov(X0(t), Xi(s)), 0 ≤ t, s ≤ 1. (1.2)
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C may be viewed as an extension of the spectral density function evaluated at zero for univariate and multivariate time
series, and its usefulness in the analysis of functional time series is similarly motivated. For example, under some regularity
conditions

√
nX̄(t) is asymptotically Gaussian with covariance function C , where

X̄(t) =
1
n

n
i=1

Xi(t),

and hence the distribution of functionals of X̄ can be approximated using an approximation of C , see Jirák (2013) andHorváth
et al. (2014). Also, the principle components computed as the eigenfunctions of the Hilbert–Schmidt integral operator

c(f )(t) =

 1

0
C(t, s)f (s)ds

may be used to give asymptotically optimal finite dimensional representations of dependent functional data, see Ferraty
and Vieu (2006). Given its representation as an infinite sum, C is naturally estimated with a kernel estimator of the form

Ĉn,h(t, s) =

n−1
i=−(n−1)

K


i
h


γ̂i(t, s), (1.3)

where

γ̂i(t, s) =


1
n

n−i
j=1


Xj(t)− X̄(t)

 
Xj+i(s)− X̄(s)


, i ≥ 0

1
n

n
j=1−i


Xj(t)− X̄(t)

 
Xj+i(s)− X̄(s)


, i < 0.

We use the standard convention that γ̂i(t, s) = 0 when i ≥ n. It was shown in Horváth et al. (2012) that if

K(0) = 1, K(u) = K(−u), K(u) = 0 if |u| > c for some c > 0, K is continuous on [−c, c], (1.4)

and

h = h(n) → ∞, h = o(n), as n → ∞, (1.5)

then

∥Ĉn,h − C∥ = oP(1), (1.6)

as long as {Xi(t)}∞i=−∞
is a weakly dependent Bernoulli shift (cf. (2.5)–(2.7)).

Although the L2 consistency of Ĉn,h holds under these standard conditions on the kernel K and the bandwidth parameter
h, their choice can greatly affect the estimators performance in finite samples. Classically, finite order kernels such as the
Bartlett and Parzen kernels were used, see Rosenblatt (1991). More recently though infinite order ‘‘flat-top’’ kernels of the
form

Kf (t; x) =

1, 0 ≤ |t| < x
(x − 1)−1(|t| − 1), x ≤ |t| < 1
0, |t| ≥ 1,

(1.7)

which are equal to one in a neighborhood of the origin and then decay linearly to zero, were advocated for by Politis and
Romano (1996) and Politis and Romano (1999) where it is shown that they give reduced bias and faster rates of convergence
when compared to kernels of finite order.

An important consideration though, regardless of the kernel choice, is the selection of the bandwidth parameter h. At
present there is no available guidance regarding the choice of the bandwidth parameter for kernel based estimation with
functional data.

One popular technique for such problems is cross validation, which has been used with success in scalar spectral density
estimation (cf. Beltrao and Bloomfield, 1987). Such methods are difficult to extend to the functional setting however since
the already time consuming calculations involved in applying cross validation with scalar data become incalculable with
densely observed curves. A separate approach which is more amenable with functional data is the use of plug-in or adaptive
bandwidths which aim tominimize themean squared error using an estimated bandwidth. Among the contributions in this
direction are Andrews (1991), Andrews and Monahan (1992), and Bühlmann (1996) who showed that the asymptotically
optimal bandwidth for spectral density estimation with scalar ARMA(p, q) data using finite order kernels is of the form
cdn1/r , where cd increases with the strength of dependence of the sequence. Their results are established by comparing the
estimators asymptotic bias,which can be computedwith standard arguments, to the asymptotic variance forwhich formulae
have been derived in the scalar case, see Priestly (1981). This theory and subsequent simulation studies all indicate that
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