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a b s t r a c t

The current regression models for interval-valued data ignore the extreme nature of the
lower and upper bounds of intervals. A new estimation approach is proposed; it considers
the bounds of the interval as realizations of the max/min order statistics coming from a
sample of nt random draws from the conditional density of an underlying stochastic pro-
cess {Yt}. This approach is important for data sets for which the relevant information is
only available in interval format, e.g., low/high prices. The interest is on the characteriza-
tion of the latent process as well as in the modeling of the bounds themselves. A dynamic
model is estimated for the conditional mean and conditional variance of the latent pro-
cess, which is assumed to be normally distributed, and for the conditional intensity of the
discrete process {nt}, which follows a negative binomial density function. Under these as-
sumptions, together with the densities of order statistics, maximum likelihood estimates
of the parameters of the model are obtained. They are needed to estimate the expected
value of the bounds of the interval. This approach is implemented with the time series of
livestock prices, of which only low/high prices are recordedmaking the price process itself
a latent process. It is found that the proposed model provides an excellent fit of the inter-
vals of low/high returns with an average coverage rate of 83%. In addition, a comparison
with current models for interval-valued data is offered.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Since the work on symbolic data by Billard and Diday (2003, 2006), a variety of regressionmodels have been proposed to
fit interval-valued data, see the survey article by Arroyo et al. (2010) for an extensive review. A first approach proposed by
Billard and Diday was to regress the centers of the intervals of the dependent variable on the centers of the intervals of the
regressors. Subsequent approaches considered two separate regressions, one for the lower bound and another for the upper
bound of intervals (Brito, 2007), or one regression for the center and another for the range of the interval (Lima Neto and
de Carvalho, 2010). None of these approaches guarantees that the fitted values from the regressions will satisfy the natural
order of an interval, i.e.,yl ≤yu, for all observations in the sample. A solution came from Lima Neto and de Carvalho (2010)
who modified the previous regression models by imposing non-negative constraints on the regression coefficients of the
model for the range. González-Rivera and Lin (2013) argued that these ad hoc constraints limit the usefulness of the model
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and proposed a constrained regression model that generalizes the previous regression models for lower/upper bounds or
center/radius of intervals, and naturally guarantees that the proper order of the fitted intervals is satisfied.

A common thread to these approaches is that they consider the lower and upper bound as distinct stochastic processes. In
this paperwe propose an alternative approach and argue that there is only one stochastic process, say {Yt}, that generates the
upper and lower bounds of the interval. When we analyze interval-valued data, we only observe the bounds and these are
extreme realizations of a latent randomvariable. This is our conceptual setup. At a fixed time t , we consider a randomvariable
Yt with a given conditional density function from which we draw randomly nt realizations. The lower and upper bounds of
the interval, i.e. (ylt and yut ) are the realized minimum and maximum values coming from the set of realizations associated
with the nt draws. As such, our interestmoves towards the analysis of these two order statistics and their probability density
functions. As an example, consider a time series of daily prices. In a given day t , from opening to closing time, there are nt
transactions, each one generating a market price. If we consider the daily number of trades as the nt random draws, their
corresponding intra daily prices are the realizations of the random variable daily price Yt , and the highest/lowest prices
are the realizations of the max/min order statistics of Yt . Observe that we are not interested in the dynamics of the intra
daily prices, only the lowest/highest prices carry information on the daily market activity. To start the modeling exercise,
we require a set of assumptions regarding the density of the underlying stochastic process and the density of the number
of draws. We will assume that the first process is continuous and it follows a conditional normal density function, and that
the second process is naturally discrete and it follows a negative binomial density. Under these assumptions, we will obtain
the expected values of the lower and upper bounds of the interval.

However, this modeling approach will also provide information on the latent process because we will be able to model
its conditional mean and conditional variance. This is an advantage in those instances in which there are no records of
opening or closing prices, typically the object of analysis, or when those prices are not very representative of the state of
the market. In this paper, we model such a time series: agricultural and livestock prices provided by the US Department of
Agriculture. We look into beef sales prices; the daily information provided is low price, high price, weighted average price,
number of trades and total pounds traded. We could model the weighted average price but this is not very informative for
potential sellers and buyers. Instead, we construct the daily interval-valued time series of low/high beef prices, which we
manually dig from several archives provided by the US Department of Agriculture, and implement our approach to discover
the characteristics of the latent price as well as the expected values of the low and high prices.

The paper is organized as follows. In Section 2, we discuss the key ideas of ourmodeling approach and its implementation
under a set of assumptions. In Section 3, we use Monte Carlo simulation to investigate the properties of the proposed maxi-
mum likelihood estimator. In Section 4, we model the dynamics of the daily beef sales and prices. In Section 5, we compare
our proposed model with some existing approaches on modeling interval-valued time series using both simulated and real
data. Finally, in Section 6, we conclude by summarizing our findings.

2. General framework

Weassume that there is an underlying stochastic process for the interval-valued time series, and in a given time t , e.g. day,
month, etc. the high/low values of intervals are the realized highest and lowest order statistics based on the random draws
from the conditional densities of the underlying stochastic process. Formally,

Assumption 1 (DGP). Let {Yt : t = 1, . . . , T } be the underlying stochastic process. The latent random variable Yt at time
t has a conditional probability density function f (yt |Ft). At each time t , from the conditional density of Yt we draw nt
observations. The number of draws has a discrete density function h(nt |Ft). Let ylt and yut be the smallest and largest values
of the random sample St ≡ {yit : i = 1, 2, . . . , nt}:

ylt ≡ min
i

St = min
1≤i≤nt

{yit},

yut ≡ max
i

St = max
1≤i≤nt

{yit}.

Then, {(ylt , yut , nt) : t = 1, . . . , T } forms the observed interval time series and number of random draws, and Ft ≡

{(yls, yus, ns) : s = 1, . . . , t − 1} is the information set available at time t .

At time t , the low and high observations (ylt and yut ) are the lowest and highest ranked order statistics of the random
sample St formed by the nt draws or trades. The joint conditional probability density of (ylt , yut) given nt and information
set Ft is

g(ylt , yut |nt , Ft) = nt(nt − 1) [F(yut |Ft) − F(ylt |Ft)]nt−2
× f (ylt |Ft)f (yut |Ft),

where F(·|Ft) is the cumulative distribution function corresponding to the conditional density f (·|Ft). Then, the joint
probability density of (ylt , yut , nt) conditional on information set Ft is,

p(ylt , yut , nt |Ft) = g(ylt , yut |nt , Ft)h(nt |Ft).

We still need to specify the conditional densities f (yt |Ft) and h(nt |Ft) and their dependence on the information set.
Therefore, we have Assumptions 2 and 3.
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