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a b s t r a c t

An order O(1/T) approximation is made to the bias in 2SLS estimation of a dynamic si-
multaneous equation model, building on similar large-T moment approximations for non-
dynamic models. The expression is long because it contains two distinct parts: a part due
to the simultaneity which is directly related to the Nagar bias and a part due to the dynam-
ics which hasmany component terms. However, the analytically corrected 2SLS estimators
resulting from this approximation performwell in terms of remaining estimation bias. The
biases of these estimators are comparedwith the Quenouille half-sample jackknife and the
residual bootstrap for 2SLS in dynamicmodels, and are found to be competitive. TheMonte
Carlo and bias approximation also suggest that the bias in estimating endogenous variable
coefficients in dynamic simultaneous equationmodels is nonmonotonic in the sample size,
contrary to the well known theoretical result for static models. The effect of using weaker
instruments on our numerical and Monte Carlo results is explored.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The issues of bias approximation and reduction have been previously addressed in relation to static simultaneous
equation models. Recent examples of bias approximation are Phillips (2000), Hahn and Hausman (2002), Hahn et al. (2004),
Phillips (2007), Iglesias and Phillips (2010), and Bun andWindmeijer (2011). On bias reduction seeMacKinnon andDavidson
(2006), Dahlberg and Blomquist (2006), Davidson andMacKinnon (2007) and Ackerberg and Devereux (2009), who consider
the JIVEmethod and its variants, see also Phillips and Hale (1977), Iglesias and Phillips (2012) who construct estimators that
are unbiased up to orders O(T−1) and O(T−2), where T is the sample size, and Hsu et al. (1986), who assess the bootstrap
method due to Freedman (1984) and the standard delete-1 jackknife for static models. The Freedman (1984) method is
asymptotically valid in the dynamic setting, and performs well in Ip (1991) for dynamic models. Freedman and Peters
(1984a,b) use the method to obtain bootstrap estimates of the bias in GLS and 3SLS coefficient estimators, respectively.
Freedman and Peters (1984a) also conduct a Monte Carlo simulation study to assess the performance of the bootstrap in
estimating standard errors, and MacKinnon (2002) presents Monte Carlo evidence for its use in hypothesis testing in static
models. Also in the context of dynamic models, Kiviet and Phillips (1995) present a small-σ approximation to the 2SLS
coefficient bias, where, following Kadane (1971), σ is a small scalar multiple of the variance of the structural equation
disturbance, and examine its use in bias reduction, showing that certain results for the static model do not carry over to the
dynamic case.
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Given a sample size T and an estimate α̂ of a coefficient vectorα, the large-T approach inNagar (1959) starts by expanding
the estimation error as follows:
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where es, for s = 1, . . . , p, and rp are all Op(1) as T → ∞. The last term is the remainder in an expansion of
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where ės, for s = 1, . . . , p, and ṙp are also bounded in probability, this time as σ , the standard deviation of the equation
disturbance, tends to zero. The bias is then approximated to order O(T−1) or O(σ 2) by calculating the first moment of the
approximate estimation error in each case.

Kadane (1971) shows that the large-T and small-σ approaches yield essentially equivalent results for the static SEM. In
particular, it is shown that the large-T result in Nagar (1959) can be obtained by taking the limit of the small-σ result as
T → ∞. Kiviet and Phillips (1989) and Kiviet and Phillips (1993) show that the same is not true in dynamic settings.

A large-T moment approximation for a dynamic simultaneous equation model (‘‘DSEM’’) is presented here under a
Normality assumption, building on the above results for static models and on the small-σ approximations for dynamic
models, see also Phillips and Liu-Evans (2009). The simulation experiments in Section 3 investigate the remaining bias and
themean squared error after using this for bias reduction. The performance of the analytically corrected estimator, C2SLS, is
compared with the bootstrap method due to Freedman (1984) and the half-sample jackknife in Quenouille (1956). Though
Freedman (1984) provides a consistency result for the bootstrap in DSEMs, there is no theoretical result for bootstrap bias
correction in this context, though the favourable simulation results in Hsu et al. (1986) for bias-corrected estimation of
2SLS estimation of static models suggest that a correction is likely. Finally, the behaviour of the bias correction numerically
is explored as the instruments grow weak, and the three bias correction methods are compared in a situation where the
instruments are relatively weak.

The jackknife method considered is due to Quenouille (1956). Dhaene and Jochmans (2010) find that it performs well
in terms of bias correction in large-T dynamic panel data modelling with fixed effects. It is referred to as the Quenouille
jackknife (QJ) here. Rather than creating subsamples by deleting one observation at a time for each subsample, two
subsamples are obtained from the first and second halves of the whole sample with the ordering intact. This has the benefit
of retaining the dynamics of the data, and it means that the 2SLS bias does not need to be monotonically decreasing in the
sample size for a bias correction to occur. The related delete-d jackknife in Shao (1989) can be applied with d = ⌈T/2⌉, but
it does not retain the dynamics and will not work here.

2. The model and bias approximation

The complete system is assumed to be as follows:

YB + Y−1Λ+ XC = Ū, (3)

where Y is a T×Gmatrix of observations onG endogenous variables, Y−1 is a T×Gmatrix of observations on the endogenous
variables lagged one time period, X is a T × K matrix of observations on K stationary exogenous variables and Ū is a T × G
matrix of structural disturbances. The matrices B,Λ and C are of dimension G× G, G× G and K × G, respectively, while B is
assumed to be non-singular. The rows of Ū are assumed to be normally and independently distributed with zero mean and
fixed covariance matrixΣ .

The reduced form of the model is

Y = −Y−1ΛB−1
− XCB−1

+ ŪB−1

= Y−1Γ + XΠ + V̄ , (4)

whereΓ = −ΛB−1,Π = −CB−1 and V̄ = ŪB−1. Here the rows of V̄ are normally distributedwith zeromean and covariance
matrixΩ = (B−1)′ΣB−1, and as a stationarity condition it is assumed that the eigenvalues of Γ are inside the unit circle.

It will be assumed that the rows of the Y matrix are generated from a fixed value Y0,. at time t = 0 so that by successive
substitution thematrix may be separated into stochastic and non-stochastic parts. This is done by noting that the t − th row
of Y may be written as
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