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a b s t r a c t

The deviance information criterion (DIC) has been widely used for Bayesian model com-
parison. However, recent studies have cautioned against the use of certain variants of the
DIC for comparing latent variable models. For example, it has been argued that the con-
ditional DIC – based on the conditional likelihood obtained by conditioning on the latent
variables – is sensitive to transformations of latent variables and distributions. Further, in
a Monte Carlo study that compares various Poisson models, the conditional DIC almost al-
ways prefers an incorrect model. In contrast, the observed-data DIC – calculated using the
observed-data likelihood obtained by integrating out the latent variables – seems to per-
form well. It is also the case that the conditional DIC based on the maximum a posteriori
(MAP) estimate might not even exist, whereas the observed-data DIC does not suffer from
this problem. In view of these considerations, fast algorithms for computing the observed-
data DIC for a variety of high-dimensional latent variable models are developed. Through
three empirical applications it is demonstrated that the observed-data DICs have much
smaller numerical standard errors compared to the conditional DICs. The corresponding
Matlab code is available upon request.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Hypothesis testing, and more generally model comparison, has long been an important problem in statistics and econo-
metrics. Bayesian model comparison has traditionally been performed using the Bayes factor, which is defined to be the
ratio of themarginal likelihoods of the two competingmodels. This model comparison criterion has a natural interpretation
and is often easy to compute for a wide range of simplemodels (see, e.g., Kroese and Chan, 2014, pp. 251–254). However, the
development of Markov chain Monte Carlo (MCMC) methods has made it possible to fit increasingly flexible and complex
models, and estimating the marginal likelihoods of these typically high-dimensional models is often difficult. In fact, there
is a vast and growing literature on marginal likelihood estimation using MCMC methods (see, e.g., Gelfand and Dey, 1994;
Chib and Jeliazkov, 2001; Friel and Pettitt, 2008; Bauwens and Rombouts, 2012; Chan and Eisenstat, forthcoming, among
many others). Despite these recent advances, computing the marginal likelihood remains a difficult problem in practice,
which often involves nontrivial programming efforts and heavy computation. In addition, the values of the Bayes factor are
often found to be sensitive to the choice of prior distributions.
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These considerations havemotivated the search for alternative model selection criteria. In particular, since Spiegelhalter
et al. (2002) introduced the concept in their seminal paper, the deviance information criterion (DIC) has been widely used
for Bayesianmodel comparison. Its popularity is further enhanced by the introduction of a number of alternative definitions
of the DIC – many of them easy to compute – for latent variable models in Celeux et al. (2006). In addition, DIC computation
is implemented in standard software packages, includingWinBUGS. The DIC has been successfully applied to a wide variety
of applications, such as comparing various stochastic volatility models in finance (see, e.g., Berg et al., 2004; Abanto-Valle
et al., 2010; Wang et al., 2013), testing functional forms in energy modeling (see, e.g., Xiao et al., 2007), and discriminating
between competingmodels for inflation aswell as othermacroeconomic time series (see, e.g., Lopes and Salazar, 2006; Chen
et al., 2012; Mumtaz and Surico, 2012). AMonte Carlo study comparing the DIC with other Bayesianmodel selection criteria
can be found in Ward (2008).

Nevertheless, some recent studies have cautioned against the use of the DIC for comparing latent variable models. For
instance, Li et al. (2012) argue that theDIC should not be usedwith data augmentation, as the complete-data likelihood of the
augmented data is nonregular and hence invalidates the standard asymptotic arguments that are needed to justify the DIC.
Moreover, theDIC based on the complete-data likelihood is sensitive to transformations of latent variables and distributional
representations. In the context of comparing Poisson models, Millar (2009) provides a Monte Carlo study which shows that
the DIC based on the conditional likelihood – obtained by conditioning on the latent variables – almost always prefers the
Poisson-gamma model instead of the Poisson-lognormal model, even when data are simulated from the latter. The author
concludes that ‘‘the DIC is a potentially dangerous tool in the present context’’. In contrast, he shows that the DIC calculated
using the integrated likelihood – obtained by integrating out the latent variables – seems to perform well. This result is not
surprising since standard asymptotic arguments for justifying the DIC apply to the DIC based on the integrated likelihood.
However, evaluation of the integrated likelihood is typically time-consuming, which is themain reasonwhy it is rarely used
in applied work. We take a first step to address these issues by proposing fast methods for computing the DIC based on the
integrated likelihood for a variety of high-dimensional latent variable models.

More specifically, the contribution of this paper is twofold. Firstly, we provide analytical expressions for the integrated
likelihoods under three popular families of latent variable models: factor models, linear Gaussian state space models and
semiparametric models. To evaluate these integrated likelihoods, we draw on recent advances in sparse matrix algorithms,
and the computational details are carefully discussed. Secondly, we document the differences in variability of the DICs com-
puted using the complete-data likelihood, the conditional likelihood and the integrated likelihood in three empirical exam-
ples.We show that theDICs based on the complete-data and conditional likelihoods generally have large numerical standard
errors. On the other hand, the DICs based on the integrated likelihoods aremore accurately estimated. This result is intuitive
since integrating out the high-dimensional latent variables is expected to reduce the variance inMonte Carlo simulation. Our
results provide another practical reason forwhyDICs based on conditional and complete-data likelihoods shouldnot beused.

The rest of this paper is organized as follows. In Section 2 we introduce the concept of deviance and several definitions
of the DIC. Section 3 discusses fast algorithms for computing the DIC based on the integrated likelihood for three classes of
latent variable models. In Section 4, the proposedmethods are illustrated via three empirical applications, involving returns
on stock portfolios, US macroeconomic time series and female body mass index and wages.

2. Deviance information criterion

In complex hierarchical models, basic concepts like parameters and their dimension are not always clear and they may
take several equally acceptable definitions. In their seminal paper, Spiegelhalter et al. (2002) introduce the concept of
effective number of parameters and develop the theory of deviance information criterion (DIC) for model comparison. The
model selection criterion is based on the deviance, which is defined as

D(θ) = −2 log f (y | θ) + 2 log h(y),

where f (y | θ) is the likelihood function of the parametric model and h(y) is some fully specified standardizing term that is
a function of the data alone. Then the effective number of parameters pD is defined as

pD = D(θ) − D(θ),
where

D(θ) = −2Eθ[log f (y | θ) | y] + 2 log h(y)

is the posterior mean deviance andθ is an estimate of θ, which is typically taken as the posterior mean or mode. Then, the
deviance information criterion is defined as

DIC = D(θ) + pD.

The posterior mean deviance can be used as a Bayesian measure of model fit or adequacy. Hence, the deviance information
criterion, which is the sum of the posterior mean deviance and the effective number of parameters, can be viewed as a
trade-off between model adequacy and complexity. For model comparison, we set h(y) = 1 for all models. Therefore, the
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