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a b s t r a c t

The linear least trimmed squares (LTS) estimator is a statistical technique for fitting a
linear model to a set of points. It was proposed by Rousseeuw as a robust alternative
to the classical least squares estimator. Given a set of n points in Rd, the objective is to
minimize the sum of the smallest 50% squared residuals (or more generally any given
fraction). There exist practical heuristics for computing the linear LTS estimator, but they
provide no guarantees on the accuracy of the final result. Two results are presented. First, a
measure of the numerical condition of a set of points is introduced. Based on this measure,
a probabilistic analysis of the accuracy of the best LTS fit resulting from a set of random
elemental fits is presented. This analysis shows that as the condition of the point set
improves, the accuracy of the resulting fit also increases. Second, a new approximation
algorithm for LTS, called Adaptive-LTS, is described. Given bounds on the minimum and
maximum slope coefficients, this algorithm returns an approximation to the optimal LTS fit
whose slope coefficients lie within the given bounds. Empirical evidence of this algorithm’s
efficiency and effectiveness is provided for a variety of data sets.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Consider an n-element point set P = {p1, . . . , pn}, where pi = (xi,1, . . . , xi,d−1, yi) ∈ Rd. In standard linear regression
with intercept, we assume the model

yi =
d−1
j=1

βjxi,j + βd + ei, for i = 1, . . . , n,

where (xi,1, . . . , xi,d−1) are the given independent variables, the yi’s are the given dependent variables, β = (β1, . . . , βd) is
the unknown coefficient vector, and the ei’s are the errors. We refer to (β1, . . . , βd−1) as the slope coefficients and βd as the
intercept. Given an estimator β̂ ∈ Rd, define the ith residual to be ri(β̂, P) = yi−

d−1
j=1 β̂jxi,j+ β̂d


. Let r[i](β̂, P) denote the

ith smallest residual in terms of absolute value.
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Robust estimators (see, e.g., Rousseeuw and Leroy, 1987) have been introduced in order to eliminate sensitivity to
outliers, that is, points that fail to follow the linear pattern of themajority of the points. The basic measure of the robustness
of an estimator is its breakdown point, that is, the fraction (up to 50%) of outlying data points that can corrupt the estimator
arbitrarily. One of the most widely studied robust linear estimators is Rousseeuw’s least median of squares estimator (LMS)
(Rousseeuw, 1984), which is defined to be the estimator that minimizes the median squared residual. More generally,
given an integer coverage value h, the objective is to find the hyperplane that minimizes the hth smallest squared residual.
A number of papers, both practical and theoretical, have been devoted to computing this estimator in the plane and in higher
dimensions (see, e.g., Souvaine and Steele, 1987; Edelsbrunner and Souvaine, 1990;Mount et al., 2000, 2004, 2007; Bernholt,
2005; Erickson et al., 2006).

It has been observed by Rousseeuw and Leroy (1987) that LMS may not be the best estimator from the perspective of
statistical properties. They argue in support of the least trimmed squares (or LTS) linear estimator (Rousseeuw, 1984). Given
an n-element point set P and a coverage h ≤ n, it is defined to be the estimator that minimizes the sum (as opposed to the
maximum) of the h smallest squared residuals. For the sake of preserving scale, we convert this into a quantity that more
closely resembles a standard deviation. More formally, given a non-vertical hyperplane β̂ define its LTS cost with respect to
P and h to be

∆
β̂
(P, h) =


1

h− 1

h
i=1

r2
[i](β̂, P)

1/2

.

Note that this measure is scale equivariant, and minimizing it is equivalent to minimizing the sum of squared residuals. The
LTS estimator is the coefficient vector of minimum LTS cost, which we denote throughout by β∗(P, h). Let ∆∗(P, h) denote
the associated LTS cost. When P and h are clear from context, we refer to these simply as β∗ and ∆∗, respectively. The LTS
problem is that of computing β∗ from P and h. We refer to the points having the h smallest squared residuals as inliers and
the remaining points as outliers. This generalizes the ordinary least squares estimator (when h = n). It is customary to
set h = ⌊(n+ d+ 1)/2⌋ for outlier detection (Rousseeuw and Leroy, 1987). In practice, h may be set to some constant
fraction of n based on the expected number of outliers. Since h determines the percentage of squared residuals that will be
trimmed from the sum to be minimized, it sometimes is referred to as the trimming option. The statistical properties of LTS
are analyzed in Rousseeuw and Leroy (1987) and Rousseeuw (1984).

The computational complexity of LTS is less well understood than that of LMS. Various exact algorithms have been
presented, which are based on variants of branch-and-bound search and efficient incremental updates (Agulló, 2001;
Hofmann and Kontoghiorghes, 2010; Hofmann et al., 2010). Unfortunately, these algorithms are practical only for fairly
small point sets. Hössjer (1995) presented an O(n2 log n) algorithm for LTS in R2 based on plane sweep. In a companion
paper (Mount et al., 2014) we presented an exact algorithm for LTS in R2, which runs in O(n2) time. We also presented an
algorithm for Rd, for any d ≥ 3, which runs in O(nd+1) time. (Throughout, we assume that d is a fixed constant.) For large n
these running times may be unacceptably high, even in spaces of moderate dimension.

Given these relatively high running times, it is natural to consider whether this problem can be solved approximately.
There are a few possible ways to formulate LTS as an approximation problem, either by approximating the residual, by
approximating the quantile, or both. The following formulations were introduced inMount et al. (2014). The approximation
parameters εr and εq denote the allowed residual and quantile errors, respectively.

Residual Approximation: The requirement ofminimizing the sumof squared residuals is relaxed. Given 0 < εr , an εr -residual
approximation is any hyperplane β such that

∆β(P, h) ≤ (1+ εr) ∆∗(P, h).

Quantile Approximation: Much of the complexity of LTS arises because of the requirement that exactly h points be covered.
We can relax this requirement by introducing a parameter 0 < εq < h/n and requiring that the fraction of inliers
used is smaller by εq. Let h− = h− ⌊nεq⌋. An εq-quantile approximation is any hyperplane β such that

∆β(P, h−) ≤ ∆∗(P, h).

Hybrid Approximation: The above approximations can be merged into a single approximation. Given εr and εq as in the
previous two approximations, let h− be as defined above. An (εr , εq)-hybrid approximation is any hyperplane β
such that

∆β(P, h−) ≤ (1+ εr)∆
∗(P, h).

Note that approximating the LTS cost does not imply that the optimum slope coefficients themselves are well
approximated. Computing an approximation to the slope coefficients seems to be difficult. In particular, for some
pathological point sets theremay bemany solutions that have nearly the same LTS costs but very different slope coefficients.
Consider, for example, fitting a plane to a set of points uniformly distributedwithin a sphere. In an earlier paper (Mount et al.,
2014), we presented an approximation algorithm for LTS whose execution time is roughly O(nd/h). In the same paper, we
presented asymptotic lower bounds for computing the LTS and the related LTA (least trimmed absolute value) estimators.
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