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a b s t r a c t

Cellwise outliers are likely to occur together with casewise outliers in modern datasets
of relatively large dimension. Recent work has shown that traditional robust regression
methods may fail when applied to such datasets. We propose a new robust regression
procedure to deal with casewise and cellwise outliers. The proposed method, called three-
step regression, proceeds as follows: first, it uses a consistent univariate filter, that is,
a procedure that flags and eliminates extreme cellwise outliers; second, it applies a
robust estimator of multivariate location and scatter to the filtered data to down-weight
casewise outliers; third, it computes robust regression coefficients from the estimates
obtained in the second step. The three-step estimator is consistent and asymptotically
normal at the central model under some assumptions on the tails of the distributions
of the continuous covariates. The estimator is extended to handle both continuous and
dummy covariates using an iterative algorithm. Extensive simulation results show that the
three-step estimator is resilient to cellwise outliers. It also performs well under casewise
contamination when compared to traditional high breakdown point estimators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The vast majority of procedures for robust linear regression are based on the classical Tukey–Huber contamination
model (THCM) in which a relatively small fraction of cases may be contaminated. High breakdown point affine equivariant
estimators such as least trimmed squares (Rousseeuw, 1984), S-regression (RousseeuwandYohai, 1984) andMM-regression
(Yohai, 1985) proceed by down-weighting outlying cases, which makes sense and works well in practice, under THCM.
However, in some applications, the contamination mechanism may be different in that random cells in a data table (with
rows as cases and columns as variables) are independently contaminated. In this paradigm, a small fraction of random
cellwise outliers could propagate to a relatively large fraction of cases, breaking down classical high breakdown point affine
equivariant estimators (see Alqallaf et al., 2009). Since cellwise and casewise outliers may co-exist in some applications, our
goal in this paper is to develop amethod for robust regression estimation and inference that can deal with both cellwise and
casewise outliers.

There is a vast literature on robust regression for casewise outliers, but only a scant literature for cellwise outliers and
none for both types of outliers in the regression context. Recently, Öllerer et al. (2015) combined the ideas of coordinate
descent algorithm (called the shooting algorithm in Fu, 1998) and simple S-regression (Rousseeuw and Yohai, 1984) to
propose an estimator called the shooting S. The shooting S-estimator assigns individual weight to each cell in the data table
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to handle cellwise outliers in the regression context. The shooting S-estimator is robust against cellwise outliers and vertical
response outliers.

In this paper, we propose a three-step regression estimator which combines the ideas of filtering cellwise outliers
and robust regression via covariance matrix estimate (Maronna and Morgenthaler, 1986; Croux et al., 2003), namely
3S-regression estimator. By filtering, here wemean detecting outliers and replacing them bymissing values as in Agostinelli
et al. (2015). Our estimator proceeds as follows: first, it uses a univariate filter to detect and eliminate extreme cellwise
outliers in order to control the effect of outliers propagation; second, it applies a robust estimator of multivariate location
and scatter to the filtered data to down-weight casewise outliers; third, it computes robust regression coefficients from the
estimates obtained in the second step.With the choice of a filter that has simultaneous good sensitivity (is capable of filtering
outliers) and good specificity (can preserve all or most of the clean data), the resulting estimator can be resilient to both
cellwise and casewise outliers; furthermore, it attains consistency and asymptotic normality for clean data. In this regards,
we propose a filter that is consistent under some assumptions on the tails of the covariates distributions. By consistent filter,
we mean a filter that asymptotically can preserve all the data when they are clean.

The rest of the paper is organized as follows. In Section 2, we introduce a family of consistent filters. In Section 3, we
introduce 3S-regression. In Section 4, we show some asymptotic properties of 3S-regression. In Section 5, we evaluate the
performance of 3S-regression in an extensive simulation study. In Section 6, we analyze a real dataset with cellwise and
casewise outliers. In Section 7, we conclude with some remarks. We also provide a document referred to as ‘‘supplementary
material’’, which contains all the proofs, additional simulation results, and other related material (see Appendix A).

2. Consistent filter

Filtering is a method for pre-processing data in order to control the effect of potential cellwise outliers. In this paper, we
pre-process the data by flagging outliers and replacing them by missing values, NAs. This method of filtering has recently
been used for robust estimation ofmultivariate location and scatter (Danilov, 2010; Agostinelli et al., 2015) and for clustering
(Farcomeni, 2014a,b). Also, Farcomeni (2015) proposed a procedure to determine a data-driven choice for the number of
filtered cells to increase the efficiency of the estimator.

Consistent filters are ones that do not filter good data points asymptotically. Gervini and Yohai (2002) introduced
a consistent filter for normal residuals in regression estimation to achieve a fully-efficient robust regression estimator.
Consistent filters are desirable because their good asymptotic properties are shared by the following-up estimation
procedure. In this paper, we introduce a new family of consistent filters for univariate data.

Consider a random variable X with a continuous distribution function G(x). We define the scaled upper and lower tail
distributions of G(x) as follows:

F u(t) = PG


X − ηu

med(X − ηu|X > ηu)
≤ t|X > ηu


and

F l(t) = PG


ηl

− X
med(ηl − X |X < ηl)

≤ t|X < ηl


.

(1)

Here, med stands for median, ηu
= G−1(1 − α), ηl

= G−1(α), and 0 < α < 0.5. We use α = 0.20, but other choices could
be considered. To simplify the notation, we set su = med(X − ηu

|X > ηu) and sl = med(ηl
− X |X < ηl). Alternatively, a

combined tails approach could be used for symmetric distributions as in Gervini and Yohai (2002).
Let {X1, . . . , Xn} be a random sample from G, and let X(1) < X(2) < · · · < X(n) be the corresponding order statistics.

Consistent estimators for (ηu, su, ηl, sl) are given by

η̂u
n = Ĝ−1

n (1 − α), ŝun = med({Xi − η̂u
n|Xi > η̂u

n}),

η̂l
n = Ĝ−1

n (α), ŝln = med({η̂l
n − Xi|Xi < η̂l

n}),

where Ĝ−1
n (a) = X(⌈na⌉), 0 < a < 1, is the empirical quantile and med({Y1, . . . , Ym}) = Y(⌈m/2⌉) is the sample median

(see Lemma 1.1 in the supplementary material (see Appendix A) for a proof of the consistency for ŝun and ŝln). The empirical
distribution functions for the scaled upper and lower tails in (1) are now given by
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n − Xi)/ŝln ≤ t)

n
i=1

I(Xi < η̂l
n)

.



Download English Version:

https://daneshyari.com/en/article/6869261

Download Persian Version:

https://daneshyari.com/article/6869261

Daneshyari.com

https://daneshyari.com/en/article/6869261
https://daneshyari.com/article/6869261
https://daneshyari.com

