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a b s t r a c t

Mixtures of Gaussian factors are powerful tools formodeling an unobserved heterogeneous
population, offering – at the same time – dimension reduction and model-based
clustering. The high prevalence of spurious solutions and the disturbing effects of
outlying observations in maximum likelihood estimation may cause biased or misleading
inferences. Restrictions for the component covariances are considered in order to avoid
spurious solutions, and trimming is also adopted, to provide robustness against violations
of normality assumptions of the underlying latent factors. A detailed AECM algorithm for
this new approach is presented. Simulation results and an application to the AIS dataset
show the aim and effectiveness of the proposed methodology.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Factor analysis is an effective method of summarizing the variability between a number of correlated features, through
a much smaller number of unobservable, hence named latent, factors. It originated from the consideration that, in many
phenomena, several observed variables could be explained by a few unobserved ones. Under this approach, each single
variable (among the p observed ones) is assumed to be a linear combination of d underlying common factors with an
accompanying error term to account for that part of the variabilitywhich is unique to it (not in commonwith other variables).
Ideally, d should be substantially smaller than p, to achieve parsimony.

Clearly, the effectiveness of this method is limited by its global linearity, as happens for principal components analysis.
Hence, Ghahramani and Hilton (1997), Tipping and Bishop (1999) and McLachlan and Peel (2000a) solidly widened the
applicability of these approaches by combining local models of Gaussian factors in the form of finite mixtures. The idea is
to employ latent variables to perform dimensional reduction in each component, thus providing a statistical method which
concurrently performs clustering and, within each cluster, local dimensionality reduction.

In the literature, error and factors are routinely assumed to have a Gaussian distribution because of their mathematical
and computational tractability: however, statistical methods which ignore departure from normality may cause biased
or misleading inference. Moreover, it is well known that maximum likelihood estimation for mixtures often leads to
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ill-posed problems because of the unboundedness of the objective function to bemaximized, which favors the appearance of
non-interesting local maximizers and degenerate or spurious solutions.

The lack of robustness in mixture fitting arises whenever the sample contains a certain proportion of data that does not
follow the underlying populationmodel. Spurious solutions can even appear whenML estimation is applied to artificial data
drawn from a given finite mixture model, i.e. without adding any kind of contamination. Hence, more robust estimation is
needed. Many contributions in this sense can be found in the literature: from the Mclust model with a noise component in
Fraley and Raftery (1998), mixtures of t-distributions inMcLachlan and Peel (2000c), the trimmed likelihoodmixture fitting
method in Neykov et al. (2007), the trimmedML estimation of contaminatedmixtures in Gallegos and Ritter (2009), and the
robust improperMLestimator introduced in Coretto andHennig (2011), amongmanyothers. Some important applications in
computer vision, pattern recognition, analysis ofmicroarray gene expression data, or tomography (see, for example, Stewart
(1999), Campbell et al. (1997), Bickel (2003) and Maitra (2001), respectively) suggest that more attention should be paid to
robustness, because noise in the datasets may be frequent in all these fields.

Different types of constraints have been traditionally applied in Gaussianmixtures of factor analyzers, for instance, some
authors propose taking a common (diagonal) error matrix (as for the Mixtures of Common Factor Analyzers, denoted by
MCFA, in Baek et al., 2010) or imposing an isotropic error matrix (Bishop and Tipping, 1998). This strategy has proven to
be effective in many cases, at the expenses of stronger distributional restrictions on the data. To avoid singularities and
spurious solutions, under milder conditions, Greselin and Ingrassia (2015) recently proposed maximizing the likelihood
by constraining the eigenvalues of the covariance matrices, following previous work of Ingrassia (2004) and going back
to Hathaway (1985). Furthermore, mixtures of t-analyzers have been considered (see McLachlan and Bean, 2005; Baek and
McLachlan, 2011; Steane et al., 2012; Lin et al., 2014b, and references therein) in an attempt tomake themodel less sensitive
to outliers, but they, too, are not robust against very extreme outliers (Hennig, 2004).

The purpose of the present work is to introduce an estimating procedure for the mixture of Gaussian factors analyzers
that can resist the effect of outliers and avoid spurious local maximizers. The proposed constraints can also be used to take
into account prior information about the scatter parameters.

Trimming has been shown to be a simple, powerful, flexible and computationally feasible way to provide robustness
in many different statistical frameworks. The basic idea behind trimming here is the removal of a small proportion α of
observations whose values would be the most unlikely to occur if the fitted model were true. In this way, trimming avoids
a small fraction of outlying observations exerting a harmful effect on the estimation. Incorporating constraints into the
mixture estimation provides a well-posed setting for the mathematical problem and reduces the risk of incurring spurious
solutions. Moreover, the formulation of the problem according to Section 3.1 allows the estimators to obtain the desired
statistical properties, such as existence and consistency, as in García-Escudero et al. (2008).

The rest of the paper has been organized as follows. In Section 2, the notation is introduced and the main ideas
about Gaussian Mixtures of Factor Analyzers (hereafter denoted by MFA) are summarized. Then, in Section 3 the trimmed
likelihood for MFA is presented, and fairly extensive notes are provided concerning the EM algorithm, with incorporated
trimming and constrained estimation. In Section 4, the performance of the new procedure is discussed, on the grounds of
some numerical results obtained from simulated and real data. In particular, the bias and MSE of robustly estimated model
parameters for different cases of data contamination, are compared using Monte Carlo experiments. The application to the
Australian Institute of Sports dataset shows how classification and factor analysis can be developed using the new model.
Section 5 contains concluding notes and provides ideas for further research.

2. Gaussian mixtures of factor analyzers

The density of the p-dimensional randomvariableX of interest ismodeled as amixture ofGmultivariate normal densities
in some unknown proportions π1, . . . , πG, whenever each data point is taken to be a realization of the following density
function,

f (x; θ) =

G
g=1

πgφp(x; µg ,6g) (1)

where φp(x; µ,6) denotes the p-variate normal density function with mean vector µ and covariance matrix 6. Here the
vector θ = θGM(p,G) of unknown parameters consists of the (G − 1) mixing proportions πg , the Gp elements of the
component means µg , and the 1

2Gp(p + 1) distinct elements of the component-covariance matrices 6g . MFA postulates
a finite mixture of linear sub-models for the distribution of the full observation vector X, given the (unobservable) factorsU.
That is, MFA provides local dimensionality reduction by assuming that the distribution of the observation Xi can be given as

Xi = µg + 3gUig + eig with probability πg(g = 1, . . . ,G) for i = 1, . . . , n, (2)

where 3g is a p × d matrix of factor loadings, the factors U1g , . . . ,Ung are N (0, Id) distributed independently of the errors
eig . The latter are independently N (0,9g) distributed, and 9g is a p × p diagonal matrix (g = 1, . . . ,G). The diagonal-
ity of 9g is one of the key assumptions of factor analysis: the observed variables are independent given the factors. Note
that the factor variables Uig model correlations between the elements of Xi, while the errors eig account for independent
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