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a b s t r a c t

The problem of finding themaximum likelihood estimates for the regression coefficients in
generalised linearmodelswith an ℓ1 sparsity penalty is shown to be equivalent tominimis-
ing the unpenalised maximum log-likelihood function over a box with boundary defined
by the ℓ1-penalty parameter. In one-parameter models or when a single coefficient is es-
timated at a time, this result implies a generic soft-thresholding mechanism which leads
to a novel coordinate descent algorithm for generalised linear models that is entirely de-
scribed in terms of the natural formulation of the model and is guaranteed to converge to
the true optimum. A prototype implementation for logistic regression tested on two large-
scale cancer gene expression datasets shows that this algorithm is efficient, particularly so
when a solution is computed at set values of the ℓ1-penalty parameter as opposed to along
a regularisation path. Source code and test data are available from http://tmichoel.github.
io/glmnat/.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In high-dimensional regression problems where the number of potential model parameters greatly exceeds the number
of training samples, the use of an ℓ1 penaltywhich augments standard objective functionswith a term that sums the absolute
effect sizes of all parameters in the model has emerged as a hugely successful and intensively studied variable selection
technique, particularly for the ordinary least squares (OLS) problem (e.g. Tibshirani, 1996, Osborne et al., 2000a, Osborne
et al., 2000b, Efron et al., 2004, Zou and Hastie, 2005, Johnstone and Titterington, 2009, Friedman et al., 2010, El Ghaoui et al.,
2012, Tibshirani et al., 2012 and Tibshirani, 2013). Generalised linear models (GLMs) relax the implicit OLS assumption that
the response variable is normally distributed and can be applied to, for instance, binomially distributed binary outcome data
or Poisson distributed count data (Nelder and Wedderburn, 1972). However, the most popular and efficient algorithm for
ℓ1-penalised regression in GLMs uses a quadratic approximation to the log-likelihood function to map the problem back to
an OLS problem and although it works well in practice, it is not guaranteed to converge to the optimal solution (Friedman
et al., 2010). Here it is shown that calculating the maximum likelihood coefficient estimates for ℓ1-penalised regression
in generalised linear models can be done via a coordinate descent algorithm consisting of successive soft-thresholding
operations on the unpenalised maximum log-likelihood function without requiring an intermediate OLS approximation.
Because this algorithm can be expressed entirely in terms of the natural formulation of the GLM, it is proposed to call it the
natural coordinate descent algorithm.

To make these statements precise, let us start by introducing a response variable Y ∈ R and predictor vector X ∈ Rp. It
is assumed that Y has a probability distribution from the exponential family, written in canonical form as

p(y | η, φ) = h(y, φ) exp

α(φ)


yη − A(η)


,
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where η ∈ R is the natural parameter of the distribution, φ is a dispersion parameter and h, α > 0 and A convex are known
functions. The expectation value of Y is a function of the natural parameter, E(Y ) = A′(η), and linked to the predictor
variables by the assumption of a linear relation η = XTβ , where β ∈ Rp is the vector of regression coefficients. It is tacitly
assumed that X1 ≡ 1 such that β1 represents the intercept parameter. Suppose now that we have n observation pairs (xi, yi)
(with xi1 = 1 fixed for all i). The minus log-likelihood of the observations for a given set of regression coefficients β under
the GLM is given by

H(β) =
1
n

n
i=1

A(xTi β)− yi(xTi β) ≡ U(β)− wTβ, (1)

where any terms not involving β have been omitted, U(β) = 1
n

n
i=1 A(xTi β) is a convex function, w = 1

n

n
i=1 yixi ∈ Rp,

and the dependence ofU andw on the data (xi, yi) has been suppressed for notational simplicity. In the penalised regression
setting, this cost function is augmented with ℓ1 and ℓ2 penalty terms to achieve regularity and sparsity of the minimum-
energy solution, i.e. H is replaced by

H(β) = U(β)− wTβ + λ∥β∥22 + µ∥β∥1, (2)

where ∥β∥2 = (
p

j=1 |βj|
2)

1
2 and ∥β∥1 =

p
j=1 |βj| are the ℓ2 and ℓ1 norm, respectively, and λ andµ are positive constants.

The ℓ2 termmerely adds a quadratic function to U which serves tomake its Hessianmatrix non-singular and it will not need
to be treated explicitly in our analysis. Furthermore a slight generalisation is made where instead of a fixed parameter µ, a
vector of predictor-specific penalty parameters µj is used. This allows for instance to account for the usual situation where
the intercept coefficient is unpenalised (µ1 = 0). The problem we are interested in is thus to find

β̂ = argmin
β∈Rp

H(β), (3)

with H a function of the form

H(β) = U(β)− wTβ +

p
j=1

µj|βj|, (4)

where U : Rp
→ R is a smooth convex function,w ∈ Rp is an arbitrary vector andµ ∈ Rp,µ < 0 is a vector of non-negative

parameters. The notation u < v is used to indicate that uj ≥ vj for all j and likewise the notation u ·v will be used to indicate
elementwise multiplication, i.e. (u · v)j = ujvj. The maximum of the unpenalised log-likelihood, considered as a function of
w, is of course the Legendre transform of the convex function U ,

L(w) = max
β∈Rp


wTβ − U(β)


,

and the unpenalised regression coefficients satisfy

β̂0(w) = argmax
β∈Rp


wTβ − U(β)


= ∇L(w),

where ∇ is the usual gradient operator (see Lemma 1 in Appendix A.1). This leads to the following key result:

Theorem 1. The solution β̂(w, µ) of

β̂(w, µ) = argmin
β∈Rp


U(β)− wTβ +

p
j=1

µj|βj|


(5)

is given by

β̂(w, µ) = β̂0

û(w, µ)


= ∇L


û(w, µ)


,

where û(w, µ) is the solution of the constrained convex optimisation problem

û(w, µ) = argmin
{u∈Rp : |u−w|4µ}

L(u). (6)

Furthermore the sparsity patterns of β̂ and û− w + sgn (β̂) · µ are complementary,

β̂j(w, µ) ≠ 0⇔ ûj(w, µ) = wj − sgn (β̂j)µj.
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