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a b s t r a c t

Constraints can be interpreted in a broad sense as any kind of explicit restriction over the
parameters. While some constraints are defined directly on the parameter space, when
they are instead defined by known behavior on the model, transformation of constraints
into features on the parameter space may not be possible. Incorporation of constraints
into the model often leads to truncations in the parameter space and multimodality which
in turn cause difficulties in posterior sampling. A variant of the Sequential Monte Carlo
algorithm is proposed by defining a sequence of densities through the imposition of the
constraint. Particles generated from an unconstrained or mildly constrained distribution
are filtered and moved through sampling and resampling steps to obtain a sample from
the fully constrained target distribution. General and model specific forms of constraints
enforcing strategies are defined. The Sequentially Constrained Monte Carlo algorithm is
demonstrated on constraints defined by monotonicity of a function, densities constrained
to low dimensionalmanifolds, adherence to amechanistic differential equationmodel, and
Approximate Bayesian Computation.

Crown Copyright© 2015 Published by Elsevier B.V. All rights reserved.

1. Introduction

Constraints are tools to incorporate external information and ensure parameters remain interpretable. In non-linear or
high dimensional models, parameter constraints are complex to define, even when constraints on the model expectation
surface may remain simple. Constraints can be defined in a broad sense as any explicit restriction over the parameter
or model space. A few examples are: inequality constraints over model parameters to enforce physical laws such as
conservation of mass and energy; ensuring monotonicity or convexity of functions in regression or non-parametric
smoothing; conforming to theoretical behavior governed by a model.

Imposition of constraints can induce multimodality and/or zero probability regions resulting in challenges in sampling
random variable θ from a target distribution and in the Bayesian context may also lead to disagreements between the prior
and likelihood. In this paper we extend the utility of Sequential Monte Carlo (SMC) samplers (Del Moral et al., 2006) by
defining a sequence of distributions by their enforcement of a constraint through the proposed Sequentially Constrained
Monte Carlo (SCMC) algorithm.We connect a ‘‘simple’’ distribution,π0(θ) to the target distribution,πT (θ), via a path defined
by the strictness of constraint enforcement, thereby generalizing the usual transitions of SMC between π0(θ) and πT (θ).
Furthermore, we show general applicability of SCMC by creatively defining constraints.

To showcase SCMC, we begin with the toy problem of polynomial regression on noisy observations with constraints
over the first and second derivatives. Sequentially imposing the constraints by defining a ‘‘soft’’ positivity constraint over
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Algorithm 1 Sequential Monte Carlo Sampler
Input: Forward and backward kernels, Kt and Lt .
1: Generate an initial sample θ1:N

0 ∼ π0;
2: W j

0 ←
1
N , j = 1, . . . ,N;

3: for t := 1, . . . , T do

• if ESS =
N

j=1


W j

t−1

2−1
< N

2 then

• resample θ1:N
t−1 with weightsW 1:N

t−1
• W 1:N

t−1 ←
1
N

• end if
• Sample θ1:N

t ∼ Kt ;

• W j
t ← W j

t−1w
j
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j
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ηt (θ
j
t )Lt−1(θ

j
t ,θ

j
t−1)

ηt−1(θ
j
t−1)Kt (θ

j
t−1,θ

j
t )
, j = 1, . . . ,N;

• NormalizeW 1:N
t .

4: end for
Return: Particles θ1:N

1:T .

the derivative polynomials produces more accurate predictions while satisfying the monotonicity and convexity/concavity
constraints. The second example involves sampling a bivariate density constrained to take non-zero probabilities only when
both variables lie on lower dimensionalmanifolds. In our third applicationwe estimate amixture of discrete and continuous
parameters of an ordinary differential equation model where we generalize the usual definition of constraint to include
model adherence. In this case, full constraint enforcement producesmultiple disjoint modes. The fourth example focuses on
parameter estimation for a chaotic stochastic differential equation model where we define the constraint through a form of
sequentially expanding model adherence criteria in an ABC algorithm. The first two applications define a general strategy
for enforcing constraints, whereas the last two constraints showcase problem specific strategies.

The rest of the paper is organized as follows; in Section 2, we provide a background on SMC samplers and the commonly
used versions of it. We explain the choice of the sequence of densities that outlines the SCMC in Section 3. In Section 4, a
general strategy is defined through a probit based soft constraint model. This SCMC strategy is applied to the derivative con-
strained polynomial regression model and a 1 dimensional model embedded on a nonlinear manifold in the 2 dimensional
sampling space while avoiding the need for a Jacobian of the transformation. Some application specific constraint strategies
are introduced in Section 5. Parameter estimation for ODE models in a sequential framework is explained in Section 5.1.
In Section 5.2, the Sequentially Constrained Approximate Bayesian Computation (SCMC ABC) algorithm is introduced and
Section 6 follows with concluding discussion.

2. Sequential Monte Carlo

SMC samplers are a family of algorithms that can be used in many challenging scenarios where random walk Markov
chainMonte Carlo (MCMC)methods fail in efficiently sampling θ from its target distribution. SMC algorithms take advantage
of a sequence of bridging distributions that bridge betweenπ0(θ), a distribution that is straightforward to sample, andπT (θ),
a difficult to sample target distribution. In Bayesian inference, these distributions are typically the prior π0(θ) and posterior
πT (θ).

SMC discretizes a sequence of densities
πt(θ) =

ηt(θ)

Zt

T

t=0

between π0(θ) and πT (θ) with possibly unknown normalizing constant Zt and kernel ηt which can be evaluated for a given
θ. The initial sample of particles, θ1:N

0 ∼ π0(θ) are filtered through iterative jittering and importance resampling steps to
eventually obtain a sample from πT (θ) as outlined in Algorithm 1 (Del Moral et al., 2006).

Algorithm 1, is very general in the sense that many possible choices could be made for the inputs of the algorithm. The
choice of the inputs, especially the forward kernels used for jittering the sample, Kt(·), and the backward kernels, Lt , that
ensure the weights are defined according to the posterior at time t , can change the order of the steps in Algorithm 1. A
variety of options for the forward and backward kernels and the resulting expressions for the incremental weights, wi, are
provided by Del Moral et al. (2006). In the following, we explain the specific choices that are made for all our examples.

At algorithmic stage t , the forward kernel, Kt is chosen to be a MCMC kernel of invariant distribution πt . The associated
backward kernel recommended by Del Moral et al. (2006) for this choice of Kt is

Lt−1(θt , θt−1) =
πt(θt−1)Kt(θt−1, θt)

πt(θt)
.
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