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a b s t r a c t

Amethod for dimension reductionwith clustering, classification, or discriminant analysis is
introduced. This mixture model-based approach is based on fitting generalized hyperbolic
mixtures on a reduced subspace within the paradigm ofmodel-based clustering, classifica-
tion, or discriminant analysis. A reduced subspace of the data is derived by considering the
extent to which group means and group covariances vary. The members of the subspace
arise through linear combinations of the original data, and are ordered by importance via
the associated eigenvalues. The observations can be projected onto the subspace, resulting
in a set of variables that captures most of the clustering information available. The use of
generalized hyperbolic mixtures gives a robust framework capable of dealing with skewed
clusters. Although dimension reduction is increasingly in demand across many application
areas, many applications are biological and so some of the real data examples are within
that sphere. Simulated data are also used for illustration.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction 1

A method for estimating a projection subspace basis derived from the fit of a generalized hyperbolic mixture (HMMDR) 2

is introduced within the paradigms of model-based clustering, classification, and discriminant analysis. This is the most 3

general case of work in this direction over the last few years, starting with an analogous approach based on Gaussian 4

mixtures (GMMDR; Scrucca, 2010). Many dimension reduction methods summarize the information available through a 5

reduced combination of the original variables. However, in terms of visualization, they do not always provide adequate 6

information on the potential structure of the data at hand. Themethod proposed herein addresses this issue by revealing the 7

underlying data clusters. At the same time, using heavy-tailed distributions, such as the generalized hyperbolic distribution, 8

to model data can be advantageous because they assign appropriate weights to more extreme points (McNeil et al., 2005). 9

The goal is to estimate a subspace that captures most of the clustering structure contained in the data. At the core of the 10

method lies the sliced inverse regression (SIR) work of Li (1991, 2000), which reduces data dimensionality by considering 11

the variation in group means to identify the subspace. Scrucca (2010) extended the SIR ideas to also include variation of 12

group covariances. The members of the subspace arise through linear combinations of the original data, and are ordered 13

by importance via their associated eigenvalues. The original observations in the data can be projected onto the subspace, 14

resulting in a set of variables that captures most of the clustering information available. 15

The remainder of the paper is outlined as follows. Sections 2 and 3 present the background material. We then outline 16

our dimension reductionmethod for selecting a reduced combination of the variables while retainingmost of the clustering 17

∗ Corresponding author. Tel.: +1 905 525 9140x23419.
E-mail address:mcnicholas@math.mcmaster.ca (P.D. McNicholas).

http://dx.doi.org/10.1016/j.csda.2015.10.008
0167-9473/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2015.10.008
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:mcnicholas@math.mcmaster.ca
http://dx.doi.org/10.1016/j.csda.2015.10.008


2 K. Morris, P.D. McNicholas / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

information containedwithin the data (Section 4). Then, the algorithm is applied to simulated (Section 5) and real (Section 6)1

data sets and the performance of our method is compared with its Gaussian and non-Gaussian analogues as well as2

with other subspace clustering techniques. Section 7 provides conclusions and suggestions for future work. Note that all3

computational work herein was carried out using R (R Core Team, 2013).4

2. Finite mixture models5

Modern data sets used inmany practical applications have grown in size and complexity, compelling the use of clustering6

and classification algorithms based on probability models. The model-based approach assumes that data are generated by a7

finite mixture of probability distributions. A p-dimensional random vector X is said to arise from a parametric finite mixture8

distribution if its density is a convex set of probability densities, i.e.,9

f (x | ϑ) =

G
g=1

πg fg(x | θg),10

where G is the number of components, πg are mixing proportions, so that
G

g=1 πg = 1 and πg > 0, and ϑ =11

(π1, . . . , πG, θ1, . . . , θG) is the parameter vector. The fg(x | θg) are called component densities and f (x | ϑ) is formally12

referred to as a G-component parametric finite mixture distribution. The use of mixture models in clustering applications13

canbe tracedback ahalf-century to an application ofGaussianmixturemodels (Wolfe, 1963). Gaussianmixturemodel-based14

approaches have been very popular due to their mathematical tractability and, until recently, they dominated literature in15

the field. Extensive details on finite mixture models are given by Everitt and Hand (1981), McLachlan and Basford (1988),16

and McLachlan and Peel (2000).17

In the past several years, non-Gaussian approaches to model-based clustering, classification, and discriminant analysis18

have flourished. This includes work on mixtures of multivariate t-distributions (Peel and McLachlan, 2000; Greselin19

and Ingrassia, 2010; Andrews et al., 2011; Steane et al., 2012; Andrews and McNicholas, 2012a; McNicholas, 2013; Lin20

et al., 2014), shifted asymmetric Laplace distributions (Franczak et al., 2014), skew-normal distributions (Lin, 2010), skew21

t-distributions (Vrbik andMcNicholas, 2012, 2014; Lee andMcLachlan, 2013, 2014;Murray et al., 2014a,b), variance-gamma22

distributions (McNicholas et al., 2014), multivariate normal-inverse Gaussian distributions (Karlis and Santourian, 2009;23

O’Hagan et al., 2016), and other approaches (e.g., Browne et al., 2012; Tortora et al., in press; Dang et al., in press). Mixtures24

of generalized hyperbolic distributions (Browne and McNicholas, 2015) are particularly relevant to work described herein.25

While it is not feasible to provide an exhaustive listing here, suffice it to say that the breadth of research on non-Gaussian26

model-based clustering and classification is becoming as rich as that of its Gaussian precursor.27

Generalized hyperbolic distributions were introduced by Barndorff-Nielsen (1977) and used to model eolian sand28

deposits, i.e., sand deposits arising from the action of wind. The name of the distribution was derived from the fact that29

its log-density has the shape of a hyperbola. Properties of generalized hyperbolic densities were discussed in Barndorff-30

Nielsen and Halgreen (1977), Blæsild (1978) and, more recently, mixtures of these distributions appeared in McNeil et al.31

(2005) and Härdle and Simar (2011). Generalized hyperbolic distributions can effectively model extreme values, making32

them very useful in the context of financial and risk management applications, where the normal distribution does not offer33

a good description of reality. Themultivariate generalized hyperbolic family is extremely flexible and containsmany special34

and limiting cases, such as the inverse Gaussian, Laplace, and skew-t distributions.35

Browne and McNicholas (2015) propose a multivariate generalized hyperbolic mixture model (HMM),36

f (x | ϑ) =

G
g=1

πg fh(x | λg , ωg , µg , 6g , αg), (1)37

where πg > 0, with
G

g=1 πg = 1, are the mixing proportions and the gth component density is38

fh(x | λg , ωg , µg , 6g , αg) =


ωg + δ(x, µg | 6g)

ωg + α⊤
g 6−1

g αg

(λg−p/2)/2

39

×

Kλg−p/2


ωg + α⊤

g 6−1
g αg)(ωg + δ(x, µg | 6g)


(2π)p/2

6g
1/2 Kλg (ωg) exp(−(x − µg)

⊤6−1
g αg)

, (2)40

with index parameter λg , concentration parameter ωg , skewness parameter αg , location µg , and scale matrix 6g . Here,41

δ(x, µg | 6g) = (x − µg)
⊤6−1

g (x − µg) is the squared Mahalanobis distance between x and µg and Kλg denotes the42

modified Bessel function of the third kind with index λg .43

The evaluation of modified Bessel functions in the density (2) sometimes leads to numerical overflow or underflow. To44

avoid these issues, we use asymptotic expansions from Abramowitz and Stegun (1972), i.e., for large x or λ,45

Kλ(λx) =


π

2λ
exp{−λρ}

(1 + x2)1/4


1 +

∞
k=1

(−1)k
uk(τ )

λk


,46
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