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a b s t r a c t

The problem of testing the null hypothesis that the regression functions of two populations
are equal versus one-sided alternatives under a general nonparametric homoscedastic
regressionmodel is considered. To protect against atypical observations, the test statistic is
based on the residuals obtainedbyusing a robust estimate for the regression functionunder
the null hypothesis. The asymptotic distribution of the test statistic is studied under the
null hypothesis and under root−n local alternatives. A Monte Carlo study is performed to
compare the finite sample behaviour of the proposed tests with the classical one obtained
using local averages. A sensitivity analysis is carried on a real data set.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let us assume that the random vectors (Xj, Yj)
t

∈ R2, j = 1, 2, follow the homoscedastic nonparametric regression
models given by

Yj = mj(Xj)+ εj = mj(Xj)+ σjUj, (1)

where mj : R → R is a nonparametric smooth function and the error εj is independent of the covariate Xj. Throughout
this paper, we will not require any moment conditions on the error distributions. As is usual in a robust framework, let us
assume that the errors εj are such that εj = σj Uj, where Uj has a symmetric distribution Gj(·) with scale 1, so that we are
able to identify the error’s scale, σj. When second moments exist, as the case of the classical approach is, these conditions
imply thatE(εj) = 0 and Var(εj) = σ 2

j , whichmeans thatmj represents the conditionalmean, while σ 2
j equals the residuals

variance, i.e., σ 2
j = Var(Yj −mj(Xj)). The nonparametric nature of model (1) offers more flexibility than the standard linear

model whenmodelling a complicated relationship between the response variable and the covariate. In many situations, it is
of interest to compare the regression functionsm1 andm2 to decide if the same functional form appears in both populations.
In particular, in this paper we focus on testing the null hypothesis of equality of the regression curves versus a one-sided
alternative. Let R be the common support of the covariates X1 and X2 where the comparison will be performed. The null
hypothesis to be considered is

H0 : m1(x) = m2(x) for all x ∈ R,
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while the alternative hypothesis is of the following one-sided type

H1 : m1(x) ≤ m2(x) for all x ∈ R and m1(x) < m2(x) for x ∈ A,

where A ⊂ R is such that P(Xj ∈ A) > 0, for j = 1, 2. (2)

When second moments exist, the problem of testing equality of two regression curves versus one-sided alternatives has
been considered by several authors such as Hall et al. (1997), Koul and Schick (1997, 2003) and Neumeyer and Dette (2005),
who extended the test proposed in Speckman et al. (2003) to allow for heteroscedasticity. On the other hand, Neumeyer
and Pardo-Fernández (2009) introduced a simple root-n test statistic based on the comparison of the sample averages of the
estimated residuals, which were computed with respect to a linear convex combination of the kernel regression estimators
obtained from each sample.

As is well known, linear kernel regression estimators are sensitive to atypical observations, since they are based on
averaging the responses.When estimating the regression function at a value x, the effect of an outlier in the responseswill be
larger as the distance between the related covariate and the point x is smaller. In this sense, atypical data in the responses in
nonparametric regression may lead to a complete distorted estimation which will clearly influence the test statistic and the
conclusions of the testing procedure. In this sense, robust estimates are needed in order to providemore reliable estimations
and inferences. Beyond the importance of developing robust estimators, the problem of obtaining robust hypothesis testing
procedures also deserves attention. In linear regression, recent developmentswere given, among others, by Salibian-Barrera
et al. (2016), where also references to previous robust proposals can be found. However, in the nonparametric setting, robust
testing procedures are very scarce. Recently, Dette andMarchlewski (2010) considered a robust test for homoscedasticity in
nonparametric regression. On the other hand, under a partly linear regression model, Bianco et al. (2006) proposed a test to
study if the nonparametric component equals a fixed given function, while Boente et al. (2013) considered the hypothesis
that the nonparametric function is a linear function under a generalized partially linear model. For the problem of testing
superiority between two regression curves, Koul and Schick (1997) defined a family of covariate-matched statistics and
derived its asymptotic behaviour under the null hypothesis and under root-n local alternatives. This family includes, in
particular, a covariate-matchedWilcoxon–Mann–Whitney test based on the sign of all response differences which does not
require the existence of secondmoments. Besides, these authors provide an asymptotic optimality theory allowing to obtain
locally asymptotically minimax tests against nonparametric root-n alternatives. To derive these properties, Koul and Schick
(1997) assume equal error distributions and equal design densities. In order to avoid these assumptions, Koul and Schick
(2003) developed amodified version of one of the covariate-matched statistics based on the response differences of Koul and
Schick (1997), but this statistic is not robust when atypical data arise in the responses, as it assumes the existence of second
moments.When considering the problemof comparing two ormore regression functions, Feng et al. (2015) considered a test
for H0 versus the general alternativem1 ≠ m2 using a generalized likelihood ratio test incorporating a Wilcoxon likelihood
function and kernel smoothers, which allows to detect alternatives with rate

√
nh, where h is the bandwidth parameter;

however, these authors assume the existence of secondmoment of the regression errors, so the applicability of theirmethod
in a robust context is quite limited.

The aim of this paper is to propose a class of robust tests for H0 versus H1 in (2) which allows for possibly different
covariate densities and error densities in the two populations. Our proposal combines the ideas of robust smoothing with
those given in Neumeyer and Pardo-Fernández (2009) to obtain a procedure detecting root-n alternatives. In Section 2, we
recall the definition of the robust estimators. The test statistics is introduced in Section 3, where its asymptotic behaviour
under the null hypothesis and root-n local alternatives is also studied. We present the results of a Monte Carlo study in
Section 4 and an illustration to a real data set in Section 5. The Appendix A contains some auxiliary results about the robust
nonparametric estimator presented in Section 2 and the proof of our main result.

2. Basic definitions and notation

Throughout this paper, we consider independent and identically distributed observations (Xij, Yij)
t, 1 ≤ i ≤ nj, with

the same distribution as (Xj, Yj)
t, j = 1, 2. When E|Yj| < ∞, the regression functions mj in (1), which in this case equals

E(Yj|Xj), can be estimated by using the Nadaraya–Watson estimator (see, for example Härdle, 1990). To be more precise,
let K be a kernel function (usually a symmetric density) and h = hn a sequence of strictly positive real numbers. Denote
Kh(u) = h−1K(u/h). Then, the classical regression estimators ofmj are defined as

mj,cl(x) =

 nj
ℓ=1

Kh

x − Xℓj

−1 nj
i=1

Kh

x − Xij


Yij. (3)

As mentioned in the introduction, the estimators defined in (3) are sensitive to atypical observations, since they are based
on averaging the responses. Robust estimates in a non-parametric setting need to be employed to provide estimators
insensitive to a single wild spike outlier. Several proposals have been considered and studied in the literature. We can
mention, among others, Härdle and Tsybakov (1988) and Boente and Fraiman (1989), who considered robust equivariant
estimators under a general heteroscedastic regressionmodel. It iswell known that, under a homoscedastic regressionmodel,
root-n scale estimators can be obtained. In particular, for fixed designs, scale estimators based on differences are widely
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