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a b s t r a c t

Mixed hidden Markov models represent an interesting tool for the analysis of longitudinal
data. They allow to account for both time-constant and time-varying sources of unobserved
heterogeneity,which are frequent in this kind of studies. Individual-specific latent features,
which may be either constant or varying over time, are included in the linear predictor
and lead to a general form of dependence between individual measurements. When a
parametric (continuous) distribution is associated to time-constant random parameters,
the estimation process requires the calculation of (multiple) integrals. These, generally,
have not a closed form and should be numerically approximated. The aim is to compare
the standard, the adaptive and the pseudo-adaptive Gaussian quadrature approximations
by means of a large scale simulation study, where continuous and discrete responses with
(conditional) density in the exponential family are considered. Simulation results show that
the approximation error is often substantially reducedwhen the adaptive quadrature rules
are considered in place of the standard one. Such an improvement comes at the cost of a
higher computational complexity when the fully adaptive scheme is applied. It is shown
that, when a sufficient number of repeatedmeasurements per unit is available, the pseudo-
adaptive quadrature represents a convenient compromise between quality of results and
computational complexity.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Longitudinal studies entail repeated measurements from a number of units taken over a known, usually finite, time
window. In the regression framework, the presence of unobserved individual characteristics, linked e.g. to omitted
covariates, leads to extra variability in themarginal distribution of the response and to dependence betweenmeasurements
from the same individual. Such unobserved heterogeneity can be either time-varying or time-constant, according to a form
of true/spurious contagion (Heckman, 1981). Because of the former, data variability can be ascribed to the time separation
between subsequent measurements: current and future outcomes are directly influenced by the past ones. Because of
the latter, differences in the response variable are related to the presence of heterogeneous populations with a different
propensity to the event. To account for these sources of extra-variability and dependence, time-constant and time-varying
individual random parameters may be added to the model specification. Parametric continuous distributions can be used
for both types of random parameters; see Diggle et al. (2002), for references. In a more appealing fashion, the latter can
be instead approximated via a discrete latent (hidden) variable with a Markovian structure; the resulting model is referred
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to as a mixed hidden Markov model (mHMM). It is worth noticing that, when the number of hidden states increases, the
discrete Markov process may be able to approximate an AR(1)-type continuous distribution.

If parameter estimates are obtained via a maximum likelihood approach, as it is frequent in the presence of latent
variables, the EM algorithm can be employed. Zucchini and MacDonald (2009) and Cappé et al. (2005) give general
references, while Bartolucci et al. (2012) discuss a comprehensive overview of applications to longitudinal data. When
considering a parametric (continuous) distribution for the time-constant random parameters, ML estimation requires the
computation of multiple integrals. Apart from the case when a Gaussian distribution is used for both the response and the
random parameters (see e.g. Lagona et al., 2014), these integrals cannot be solved analytically and numerical approximation
techniques are a potential solution.

Recently, some proposals have been introduced to deal with such an issue. Altman (2007) has discussed standard
Gaussian quadrature (GQ) in a direct ML perspective and a Monte Carlo EM (MCEM) algorithm; an original variant of
the MCEM algorithm has been proposed by Chaubert-Pereira et al. (2010). Maruotti and Rydén (2009) have suggested to
leave the distribution of time-constant random parameters unspecified (as in Aitkin, 1999) and to approximate it through
a discrete distribution estimated with a nonparametric maximum likelihood (NPML) approach (see Laird, 1978; Böhning,
1982; Lindsay, 1983a,b). For a general review of mixed hidden Markov models the reader is referred to Maruotti (2011).

Although Altman (2007), Maruotti and Rydén (2009) and Lagona et al. (2014) have discussed general random parameter
mHMMs, only random intercepts have been considered in empirical applications and simulation studies. Therefore, a first
question is whether this class of models can be easily adapted to handle general random parameters. A further question
arises when we consider parametric specifications for the distribution of the individual-specific random parameters with
time-constant structure. In the context of mixed parameter models, it is generally acknowledged that standard Gaussian
quadrature may produce unsatisfactory approximations and poor estimates. Adaptive (Liu and Pierce, 1994; Pinheiro and
Bates, 1995) and pseudo-adaptive schemes (Rizopoulos, 2012) have been introduced to improve the quality of results.
Within the adaptive quadrature approaches, standard GQ locations, which are symmetric around zero, are centred and
scaled at each step (fully adaptive quadrature) or only at the beginning of the optimization algorithm (pseudo-adaptive
quadrature) to relocate themainmass of the integrand at zero. This is shown to reduce the approximation error supplied by
the GQ technique. In the framework of multilevel models, Rabe-Hesketh et al. (2002, 2005) have proved, via an extensive
simulation study, that the adaptive Gaussian quadrature rule outperforms the standard approach, especially when the
intraclass correlation is high. Cagnone and Monari (2013) have compared the fully adaptive and the standard Gaussian
approximation in the framework of high-dimensional latent variable models; as the dimension increases, the standard
Gaussian quadrature turns out to be less appropriate due to the difficulties in reaching convergence in a reasonable number
of iterations. In the context of joint models for longitudinal and time to event data, Rizopoulos (2012) has shown that the
pseudo-adaptive scheme leads to accurate parameter estimates with a lower number of locations when compared to the
standard scheme, thus consistently reducing the computational load.

To our knowledge, this topic has not been adequately investigated in the context of mHMMs; the aim of this paper is at
comparing the standard Gaussian quadrature approach discussed by Altman (2007) with the fully adaptive and the pseudo-
adaptive quadrature schemes. To assess the quality of these approximations, we have considered, in a large scale simulation
study, responses having conditional Gaussian, Poisson and Bernoulli distribution, with varying sample sizes and number of
repeatedmeasurements per unit. The plan of the paper follows. In Section 2,we introduce the standardmHMM. Sections 3–4
entail the EM algorithm for parameter estimation and the quadrature schemes. Section 5 describes the simulation study and
the corresponding results. The last section contains concluding remarks and outlines future research agenda.

2. Mixed hidden Markov models

As stressed before, these models combine features of hidden Markov and mixed parameter models. In hidden Markov
models (see e.g. Zucchini and MacDonald, 2009), the distribution of the observed response is defined conditional on
the current hidden state, which represents the realization of a latent process evolving over time according to a Markov
structure. In mixed parameter models, see Laird and Ware (1982), the response distribution is specified conditional on
individual-specific randomparameters that capture latent, time-constant, characteristics. Bothmodels account formarginal
dependence between measurements from the same unit.

Before describingmHMMs, some basic notations need to be introduced. Let Yit denote the longitudinal response recorded
for unit i = 1, . . . , n at occasion t = 1, . . . , Ti and let us consider a homogeneous hidden Markov chain {Sit} taking values
in the finite set S = {1, . . . ,m}. In the following, we will refer to measurement occasions that are equally spaced and
taken at pre-specified times; for this reason, we will use the generic term time. We assume that all individuals share the
same initial probability vector δ = (δ1, . . . , δm) and the same transition probability matrix Q = {qkh} which is constant
over the time. Terms δh represent the probability of starting in the hth state, while qkh represents the probability of moving
from the kth state at time t − 1 to the hth one at time t , where h, k = 1, . . . ,m, t = 1, . . . , Ti. Let bi represent a vector of
individual-specific random parameters; a typical choice is to consider Gaussian random parameters bi ∼ MVN(0,D).

mHMMsare based on the following assumptions. The time-constant randomparametersbi are independent of the hidden
process {Sit}; the distribution of the observed response at a given time is defined conditional on the hidden state occupied
at the same time and the individual-specific vector bi. Conditional on sit and bi, observations from the same individual are
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