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h i g h l i g h t s

• We provided necessary and sufficient conditions such that fused lasso consistently recovers the piecewise constant pattern.
• We found that in general the fused lasso is not consistent.
• We proposed a preconditioned fused lasso to overcome the non-consistent issue.
• Simulation studies support our findings.
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a b s t r a c t

We study the property of the Fused Lasso Signal Approximator (FLSA) for estimating
a blocky signal sequence with additive noise. We transform the FLSA to an ordinary
Lasso problem, and find that in general the resulting design matrix does not satisfy the
irrepresentable condition that is known as an almost necessary and sufficient condition
for exact pattern recovery. We give necessary and sufficient conditions on the expected
signal pattern such that the irrepresentable condition holds in the transformed Lasso
problem. However, these conditions turn out to be very restrictive. We apply the newly
developed preconditioning method — Puffer Transformation (Jia and Rohe, 2015) to the
transformed Lasso and call the new procedure the preconditioned fused Lasso. We give non-
asymptotic results for this method, showing that as long as the signal-to-noise ratio is not
too small, our preconditioned fused Lasso estimator always recovers the correct pattern
with high probability. Theoretical results give insight into what controls the ability of
recovering the pattern — it is the noise level instead of the length of the signal sequence.
Simulations further confirm our theorems and visualize the significant improvement of the
preconditioned fused Lasso estimator over the vanilla FLSA in exact pattern recovery.

© 2015 Published by Elsevier B.V.

1. Introduction 1

Assume we have a sequence of signals (y1, y2, . . . , yn) and it follows the additive model Q2
Q3

2

yi = µ∗

i + ϵi, i = 1, 2, . . . , n, (1) 3

where Y = (y1, . . . , yn)T ∈ Rn is the observed signal vector, µ∗
= (µ1, . . . , µn)

T
∈ Rn the expected signal vector, and Q4 4

ϵ = (ϵ1, . . . , ϵn)
T the white noise such that ϵ1, . . . , ϵn are assumed to be i.i.d. Gaussian random variables with mean 0 and 5

variance σ 2. The model is assumed to be blocky in the sense that the signals come in blocks and have only a few change- 6

points. To be exact, there exists a partition of {1, 2, . . . , n} = ∪
J
j=1{Lj, Lj + 1, . . . ,Uj} with L1 = 1,UJ = n,Uj ≥ Lj, Lj+1 7
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Fig. 1. This figure is from Tibshirani and Wang (2008). The fused Lasso is applied to some CGH data. The data are shown in the left panel, and the solid
line in the right panel represents the estimated signals by the fused Lasso. The horizontal line is for y = 0.

= Uj + 1, and the following stepwise function holds:1

µ∗

i = ν∗

j 1Lj≤i≤Uj ,2

with ν∗

j , Lj,Uj fixed but unknown. We also assume that the vector ν = (ν1, ν2, . . . , νJ) is sparse, meaning that only a few of3

νj’s are nonzeros. We point out that the Gaussian noise is not necessary, but we still use it to get insight of the fused lasso.4

The variance σ 2 of ϵi is themeasure of noise level and does not have to be a constant here. Inmany cases, each observation of5

yi can be an average of multiple measurements and so σ 2 decreases when the number of measurements increases. Rinaldo6

(2009) considers the model when σ 2
= σ 2

0 /n, where σ0 is a constant. We do not make this specific assumption in the7

development of our theory.8

Featured by blockiness and sparseness, this model has many applications. For example, in tumor studies, based on the9

Comparative Genomic Hybridization (CGH) data, it can be used to automatically detect the gains and losses in DNA copies10

by taking the ‘‘signal’’ above as the log-ratio between the number of DNA copies in tumor cells and that in reference cells11

(Tibshirani and Wang, 2008). For more applications, see Tibshirani and Taylor (2011), Friedman et al. (2007) and Hoefling12

(2010).13

One way to estimate the unknown parameters is via the Fused Lasso Signal Approximator (FLSA) defined as follows14

(Tibshirani et al., 2004; Friedman et al., 2007):15

µ̂(λ1, λ2) = argmin
µ

1
2
∥Y − µ∥

2
2 + λ1∥µ∥1 + λ2∥µ∥TV , (2)16

where ∥µ∥1 =
n

i=1 |µi|, ∥µ∥
2
2 =

n
i=1 µ2

i and ∥µ∥TV =
n−1

i=1 |µi+1 − µi|. The L1-norm regularization controls the17

sparsity (number of zeros) and the total variation seminorm (∥µ∥TV ) regularization controls the blockiness (number of18

blocks or partitions).19

Fig. 1 gives some CGH data, a typical example of signals with such features and a proper FLSA estimate on the data. More20

details and examples can be seen in Tibshirani and Wang (2008).21

One important question for the FLSA is how good the estimator defined in Eq. (2) is. We analyze in this paper if the FLSA22

can recover the ‘‘stepwise pattern’’ or not. We also try to answer the following question: what do we do if the FLSA does23

not recover the ‘‘stepwise pattern’’? To measure how good an estimator is, we introduce the following definition of Pattern24

Recovery.25

Definition 1 (Pattern Recovery). An FLSA solution µ̂(λ1n, λ2n) recovers the signal pattern if and only if there exist λ1n and26

λ2n, such that27

sign(µ̂i+1(λ1n, λ2n) − µ̂i(λ1n, λ2n)) = sign(µ∗

i+1 − µ∗

i ), i = 1, . . . , n − 1. (3)28

We use µ̂ =js µ
∗ to shortly denote (3) (js is the acronym for jump sign). The FLSA with the property of pattern recovery29

means that it can be used to identify both the groups and the jump directions (up or down) between groups.30

The concept of pattern recovery of the FLSA is very similar to the sign recovery of the Lasso (Zhao and Yu, 2006). In fact,31

we will see in Section 2 that the pattern recovery property of the FLSA is equivalent to the sign recovery property of the32

Lasso after transformation.33

For observation pairs (xi, yi), i = 1, 2, . . . , nwith xi ∈ Rp and yi ∈ R, the Lasso estimator is defined as follows (Tibshirani,34

1996):35

β̂(λ) = argmin
β

1
2

n
i=1

(yi − xTi β)2 + λ∥β∥1,36



Download English Version:

https://daneshyari.com/en/article/6869391

Download Persian Version:

https://daneshyari.com/article/6869391

Daneshyari.com

https://daneshyari.com/en/article/6869391
https://daneshyari.com/article/6869391
https://daneshyari.com

