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a b s t r a c t

Many engineering design optimization problems containmultiple objective functions all of
which are desired to be minimized, say. This paper proposes a method for identifying the
Pareto Front and the Pareto Set of the objective functions when these functions are evalu-
ated by expensive-to-evaluate deterministic computer simulators. The method replaces the
expensive function evaluations by a rapidly computable approximator based on a Gaus-
sian process (GP) interpolator. It sequentially selects new input sites guided by values of
an ‘‘improvement function’’ given the current data. The method introduced in this paper
provides two advances in the interpolator/improvement framework. First, it proposes an
improvement function based on the ‘‘modified maximin fitness function’’ which is known
to identify well-spaced non-dominated outputs when used in multiobjective evolutionary
algorithms. Second, it uses a family of GPmodels that allows for dependence among output
function values but which permits zero covariance should the data be consistent with this
model. A closed-form expression is derived for the improvement function when there are
two objective functions; simulation is used to evaluate it when there are three or more ob-
jectives. Examples from the multiobjective optimization literature are presented to show
that the proposed procedure can improve substantially previously proposed statistical im-
provement criteria for the computationally intensive multiobjective optimization setting.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper proposes an algorithm for sequentially designing a sequence of inputs at which to run a set of expensive-
to-evaluate functions so as to identify the Pareto Front of function values and the Pareto Set of inputs. Throughout, let
y(x) = (y1(x), . . . , ym(x)) denote the m functions of interest, d the number of inputs, and x = (x1, . . . , xd) a generic input.
The input space for x is denoted by X ⊂ Rd and the function values y(x), x ∈ X, form the objective space.

The goal of this paper is to find the complement of the set inputs x ∈ X that are dominated by one or more inputs in X.
An input x1 ∈ X weakly dominates x2 ∈ X (x1 ≽ x2) if yi(x1) ≤ yi(x2) for all i = 1, . . . ,m. If at least one inequality is strict,
then x1 is said to dominate x2 (x1 ≻ x2). Equivalently, an input x1 does not dominate x2 (x1 ⊁ x2) if there exists any i such
that yi(x1) > yi(x2). Geometrically, x1 ≻ x2 if y(x1) is strictly to the ‘‘southwest’’ of y(x2).

In an analogous fashion, for y(x1) and y(x2) in the objective space, y(x1) is said toweakly dominate y(x2) (y(x1) ≽ y(x2))
if yi(x1) ≤ yi(x2) for all i = 1, . . . ,m. If at least one inequality is strict, then y(x1) is said to dominate y(x2) (y(x1) ≻ y(x2)).
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An output y(x1) does not dominate output y(x2) (y(x1) ⊁ y(x2)) if there exists any i such that yi(x1) > yi(x2). An input
vector x ∈ X is Pareto optimal if and only if there is no x′

∈ X such that x ≺ x′. (Such x are also referred to as nondominated
inputs. The image y(x) of a nondominated input is sometimes referred to as a nondominated output.)

Thus the goal can be restated as that of finding the set of all x ∈ X which are not dominated by any other input in X;
the set of nondominated inputs is called the Pareto Set. The set of (y1(x), . . . , ym(x)) corresponding to x in the Pareto Set is
termed the Pareto Front. This paper proposes an algorithm that uses previous y(x) evaluations to determine a sequence of
inputs x to identify the Pareto Set and the associated Pareto Front.

In most real-world applications, the Pareto Front is an uncountable set and cannot be found analytically. Therefore this
paper, as do virtually all papers that identify Pareto Fronts/Sets, finds a discrete approximation to the Pareto Front. In
addition, many current methodologies for approximating Pareto Fronts and Pareto Sets, such as the weighted summethod,
the ϵ-constrained method, multiobjective evolutionary algorithms (see Coello et al., 2006), and the MULTIMADS algorithm
introduced inAudet et al. (2010) have beendesigned for applicationswheremany (hundreds, possibly thousands) of function
evaluations are feasible. Under these conditions, the algorithms above have proven to be very effective at identifying these
two Pareto Sets. However, in multiobjective settings where one is running a detailed deterministic computer simulator that
is expensive-to-evaluate, only a few dozen function evaluationsmay be available. This paper proposesmethodology for such
cases.

In overview, the proposedmethodology builds a rapidly-computable surrogate for y(x), which is used to guide the search
for nondominated points. The y(x) surrogate that the authors employ is an interpolator of the training data based on a Gaus-
sian process (GP) stochastic model (see Santner et al., 2003). The search selects the x ∈ X which maximizes a heuristically
selected ‘‘expected improvement’’ criterion. The methodology proposed in this paper provides two key improvements over
other interpolator/expected improvement schemes that have been considered in the literature (Schonlau, 1997; Jones et al.,
1998; Keane, 2006; Emmerich et al., 2006; Knowles, 2006), First, it is the only proposed multiobjective expected improve-
ment approach that considers stochastic prediction models which allow for dependence among the components of y(x);
procedures that have used dependence models in other applications can lead to improved procedure performance (Ver
Hoef and Cressie, 1993; Williams et al., 2010; Fricker et al., 2013). Second, the improvement criterion is based on the max-
imin fitness function (see Balling, 2003) from the multiobjective evolutionary algorithm (MOEA) literature. This metric of
distance quantifies how much better a given output vector is than the current best estimate of the Pareto front and directs
MOEAs towards well-spaced designs that are close to the true Pareto front.

The remainder of this paper is organized as follows. To provide context, Section 2 reviews the expected improvement
approach proposed in Schonlau (1997) and Jones et al. (1998) for single-objective functions. Section 3 describes the
multivariateGaussian processmodel that forms the basis for the proposed objective function emulators. Section 4 introduces
the proposed improvement criterion and describes its implementation. Section 5 presents the sequential algorithm used to
approximate Pareto Front and Pareto Set. Section 6 presents two examples that contrasts the new method with previous
proposals from Keane (2006). Finally, Section 7 contains recommendations as to which methods should be used in practice,
compares the proposed approach to the hypervolume-basedmethod of Emmerich et al. (2006), anddiscusses future research
regarding the expected improvement approach to multiobjective optimization.

2. Optimization of a single black-box function

To facilitate understanding the multivariate optimization proposal given in this paper, this section introduces the
key ideas for the simpler problem of minimizing a single (expensive-to-evaluate) real-valued function y(x) defined on a
d-dimensional input spaceX. Themethod described is due to Schonlau (1997), Jones et al. (1998)who introduced amethods
for minimizing y(·) based on a GP model which they called the ‘‘efficient global optimization’’ (EGO) algorithm. The EGO
algorithm uses a probabilistic assessment of y(x) given the current data that is provided by the GP model. Specifically,
these authors determine the information about the global minimum of y(·) that is in each potential x by the (conditional)
expectation of a heuristically selected improvement function.

Suppose that y(·) has been evaluated at each input in the ‘‘design’’ Dn = {x1, . . . , xn} ⊂ X. Let yn
= (y(x1), . . . , y(xn))T

denote the corresponding vector of outputs. The deterministic output y(x) is regarded as a draw from a stationary GP, Y (x),
with mean β , variance σ 2, and correlation function

Cov

Y (x), Y (x⋆)


= R


x − x⋆

| θ


= exp


−

d
i=1

θi

xi − x⋆

i

2
, (1)

where θ = (θ1, . . . , θd) . The parameters (β, σ 2, θ) are unknown and must be estimated to complete specification of the
GP model.

The GP provides the basis for interpolation of y(·) and uncertainty assessment of the predicted values. When
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known, the best linear unbiased predictor (BLUP) of y(x0) is
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