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a b s t r a c t

In this paper, we propose an optimization algorithm called the modified local quadratic
approximation algorithm for minimizing various ℓ1-penalized convex loss functions. The
proposed algorithm iteratively solves ℓ1-penalized local quadratic approximations of the
loss function, and then modifies the solution whenever it fails to decrease the original ℓ1-
penalized loss function. As an extension, we construct an algorithm for minimizing various
nonconvex penalized convex loss functions by combining the proposed algorithm and con-
vex concave procedure, which can be applied tomost nonconvex penalty functions such as
the smoothly clipped absolute deviation andminimax concave penalty functions. Numeri-
cal studies show that the algorithm is stable and fast for solving high dimensional penalized
optimization problems.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction 1

The ℓ1-penalized estimations play important roles in high-dimensional data analysis. For example, Tibshirani (1996) 2

proposed the least absolute shrinkage and selection operator (LASSO) in linear regression models, which minimizes ℓ1- 3

penalized sum of squares of residuals. The LASSO produces sparse solutions and achieves higher prediction accuracy than 4

classical stepwise variable selection methods. There exist many optimization algorithms for minimizing ℓ1-penalized sum 5

of squares of residuals. For example, quadratic programming (QP) techniques were considered by Tibshirani (1996) and 6

Osborne et al. (2000). Efron et al. (2004) developed the least angle regression and selection (LARS) algorithm that can find the 7

whole solution path with respect to a tuning parameter. A coordinate descent (CD) algorithm was introduced by Friedman 8

et al. (2007) that is simple but fast. 9

In addition to linear regression models, the ℓ1-penalized approaches have been applied to various high-dimensional 10

statistical models; wavelet analysis (Chen et al., 1999), kernel machine methods (Gunn and Kandola, 2002), smoothing 11

splines (Zhang et al., 2004), logistic regression models (Park and Hastie, 2007) and multi-class logistic regression models 12

(Kim et al., 2006). These models require optimization algorithms for minimizing ℓ1-penalized convex loss functions that 13

are not quadratic functions. Lokhorst et al. (2006) developed a modified QP technique for logistic regression models, and 14

Kim et al. (2008b) proposed a gradient decent algorithm for general convex loss functions with an ℓ1-constraint. Using 15

the idea of the LARS algorithm, Park and Hastie (2007) proposed an approximated path-finding algorithm for the ℓ1- 16

penalized generalized linear models. Friedman et al. (2010) proposed a local quadratic approximation (LQA) algorithm for 17

∗ Corresponding author.
E-mail address: ydkim0903@gmail.com (Y. Kim).

http://dx.doi.org/10.1016/j.csda.2015.08.019
0167-9473/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.csda.2015.08.019
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:ydkim0903@gmail.com
http://dx.doi.org/10.1016/j.csda.2015.08.019


2 S. Lee et al. / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

ℓ1-penalized generalized linear models that iteratively minimizes the ℓ1-penalized local quadratic approximation of the1

likelihood function using the CD algorithm of Friedman et al. (2007).2

In this paper, we propose an optimization algorithm called themodified local quadratic approximation (MLQA) algorithm3

for minimizing various ℓ1-penalized convex loss functions. The MLQA algorithm modifies the LQA algorithm to have a4

descent property (i.e. the objective function always decreases). Hence, the proposed MLQA algorithm always converges5

even when the LQA fails to converge. Moreover, the modification step in the MLQA requires a one-dimensional convex6

optimization that can be easily done by a line search, and hence the additional computational burden is minimal. As an7

extension, we develop an algorithm called the CCCP–MLQA algorithm for minimizing various nonconvex penalized convex8

optimization problems by combining the MLQA algorithm and convex concave procedure (CCCP) of Yuille and Rangarajan9

(2003). The CCCP–MLQA algorithm can be applied to most of nonconvex penalties such as the smoothly clipped absolute10

deviation (SCAD) penalty of Fan and Li (2001) and minimax concave (MC) penalty of Zhang (2010).11

There are variousmodified versions of the LQA algorithm. An example is tomodify the Hessianmatrix, where Krishnapu-12

ram et al. (2005) suggested to use an upper bound of the Hessian instead of the Hessian itself to approximate the objective13

function by a quadratic function. However, the algorithm of Krishnapuram et al. (2005) is not applicable when the upper14

bound of the Hessian matrix does not exist (e.g. Poisson regression). Yuan et al. (2012) proposed an improved version of15

the LQA algorithm of Friedman et al. (2010) by adapting a line search method at every iteration of the inner loop in the CD16

algorithm. The number of line searches, however, is proportional to the dimension of parameters and so not efficient for17

high dimensional model. Modifications of the LQA algorithm for general nonlinear optimization problems can be found in18

De Borst et al. (2012), Bishop (1995) and Böhning and Lindsay (1988).19

The paper is organized as follows. We introduce the proposed MLQA algorithm in Section 2 with the proof of its descent20

property. Section 3 presents stability and efficiency of the MLQA algorithm through simulations. Section 4 introduces the21

CCCP–MLQA algorithm and discussions follow in Section 5.22

2. MLQA algorithm for ℓ1-penalized estimation23

2.1. Review of LQA algorithm24

Consider the problem of obtaining the ℓ1-penalized estimator β̂ ∈ Rp:25

β̂ = argmin
β

Qλ(β), (1)26

where Qλ(β) = L(β)+λ∥β∥1, L : Rp
→ R is a convex loss function, λ > 0 is a given tuning parameter and ∥·∥1 denotes the27

ℓ1-norm operator. If the loss function L is a quadratic function of β, we can directly apply the LARS or CD algorithm (Efron28

et al., 2004; Friedman et al., 2007) to obtain β̂. However, it is not easy to find β̂ if the loss function L is not quadratic.29

Algorithm 1 The LQA algorithm for minimizing Qλ(β)

Set an initial estimator β̃
repeat

Update β̃ with β̂
a
= argminβ Q̃λ(β; β̃)

until convergence

Given a current estimator β̃, consider a local quadratic approximation L̃ of L around β̃:30

L̃(β; β̃) = L(β̃)+ ∇L(β̃)T (β − β̃)+ (β − β̃)T∇2L(β̃)(β − β̃)/2, (2)31

where ∇L(β) = ∂L(β)/∂β and ∇
2L(β) = ∂2L(β)/∂β2. The LQA algorithm presented in Algorithm 1 finds β̂ by iteratively32

updating β̃ with33

β̂
a
= argmin

β
Q̃λ(β; β̃), (3)34

until convergence, where Q̃λ(β; β̃) = L̃(β; β̃) + λ∥β∥1. If the current estimator β̃ is sufficiently close to β̂, the quadratic35

approximation works well, so that the LQA algorithm has a descent property. That is Qλ(β̂
a
) ≤ Qλ(β̃).36

The LQA algorithm is easy to be implemented for sufficient smooth convex loss functions since it requires only the first37

and second derivatives. Moreover, the ℓ1-penalized quadratic function Q̃λ(β; β̃) in (3) is easy to be minimized by using the38

LARS or CD algorithms. For the completeness, we present the CD algorithm for the LQA in Algorithm 2. In the algorithm, η̃j39

and ζ̃j are the jth element of∇L(β̃) and the jth diagonal entry of∇2L(β̃), respectively, and α̃a
j and γ̃ j are the vectors obtained40

by deleting the jth element from the β̃
a
and the jth column vector of ∇

2L(β̃), respectively. See Friedman et al. (2010) for41

details.42
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