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a b s t r a c t

In many situations, wemay encounter time series that are non-negative. Examples include
trading duration, volume transaction and price volatility in finance, waiting time in a queue
in social sciences, and daily/hourly rainfall in natural sciences. The vectormultiplicative er-
rormodel (VMEM) is a natural choice formodeling such time series in amultivariate frame-
work. Despite the popularity and extensive use of themodel, very littlework has been done
on the area of diagnostic checking which however provides useful information about the
adequacy of model fitting. In this paper, the asymptotic distribution of residual autocorre-
lations is derived and used to devise a new multivariate portmanteau test for diagnostic
checking. Simulation studies are performed to assess the performance of the asymptotic
result in finite samples. An empirical example is also given to demonstrate that the com-
monly used goodness-of-fit test may lead to a misleading result in the case of the VMEM.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many situations, we may encounter time series that are non-negative. For example, in financial time series analysis,
the duration between consecutive trades, volume transaction, realized volatility and daily price range of an asset are all
non-negative. The multiplicative error model (MEM) (introduced by Engle, 2002) and its multivariate extension, the vector
multiplicative error model (VMEM), are standard approaches to model such non-negative-valued time series, especially
when these time series share similar persistence and clustering features as the squared returns. A popular special case of
this model class is the autoregressive conditional duration (ACD) model for financial durations (reviewed in Pacurar, 2008)
that was first proposed by Engle and Russell (1998). Since then, multiplicative error specifications have been adopted for
modeling different kinds of financial data such as realized volatility (Engle and Gallo, 2006; Lanne, 2006; Cipollini et al.,
2012), squared return (Engle and Gallo, 2006; Hautsch, 2008), trading volume (Manganelli, 2005), price range (Chou, 2005;
Engle and Gallo, 2006), and implied volatility (Ahoniemi and Lanne, 2009). Ding (2012) gave an extensive literature review
on the MEM and VMEM. As pointed out in Koul et al. (2012), potential applications of the MEM family in economics, social
sciences and natural sciences include modeling demand for electricity, waiting time in a queue and daily/hourly rainfall.

TheVMEM, amodel formultivariate time serieswithnon-negative components, has beenproposeddue to the demand for
joint modeling of different volatility measures. For example, Engle and Gallo (2006) proposed a three-dimensional VMEM to
jointly model realized volatility, absolute return and price range. In order to simplify the estimation procedure, the authors
assumed that different components of the innovation are independent to each other and the conditional expectations of
one process are related to the others by means of the lagged realized values but not the lagged conditional expectations.
However, these assumptions seem to be restrictive and unrealistic. Cipollini et al. (2007) and Ahoniemi and Lanne (2009)
suggested the use of multivariate Gamma distribution to allow dependence between different innovation’s components,
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but it complicates the estimation considerably. On the other hand, Cipollini et al. (2007) also proposed an alternative model
that uses copula to construct the joint conditional distribution of the innovation. However, the use of copula is often under
question in finance and the choice of a copula function seems to be arbitrary. Very often, the major issue of the analysis is
the dynamics of the conditional expectations but not the distributional specification of the innovation. Motivating from this
idea, Cipollini et al. (2012) proposed a semiparametric specification of the VMEM which bypasses the full specification of
innovation’s conditional distribution. The model is flexible enough to describe the interaction between different processes
and at the same time keeps the estimation tractable.

Another application of the VMEM is joint modeling of different components of realized volatility. Realized volatility is
often decomposed into continuous and jump components in order to deal with outliers which are assumed to carry some
valuable information (see e.g. Barndorff-Nielsen and Shephard, 2004; Bollerslev et al., 2009; Andersen et al., 2011; Ding,
2012). Ding (2012) defined the jump component as the division of realized volatility by quadpower volatility which acts as
the continuous component. Since both the continuous and jump components are non-negative, a bivariate VMEM is used
to jointly model these two components.

Diagnostic checking tools are available for MEMs, mainly in the context of ACD models. Li (1991) considered diagnostic
checking for time series with conditional generalized linear model distribution. Following the work of Li and Mak (1994), Li
and Yu (2003) extended themodel checking step of the Box–Jenkinsmethodology in ARMA processes (Box and Pierce, 1970)
to ACD models by deriving the asymptotic distribution of residual autocorrelations when the innovation is exponentially
distributed, which results in a portmanteau test statistic. Meitz and Teräsvirta (2006) devised a class of Lagrange multiplier
(LM) tests against various forms of misspecification of the conditional expectations and showed that the LM test of no ACD
effect on residuals is asymptotically equivalent to that proposed by Li and Yu (2003). Duchesne and Pacurar (2008) made
use of a kernel spectral density estimator of the residuals to construct some adequacy tests for ACD models. Chen and
Hsieh (2010) proposed a set of generalized moment tests for the conditional expectations based on the quasi-maximum
exponential likelihood method. Hong and Lee (2011) developed a class of generalized spectral derivative tests based on
the generalized spectrum concept. Koul et al. (2012) considered the diagnostic checking problem of MEMs with Markov
structure. All the above work deal with univariate MEMs.

For the VMEM, the only diagnostic test employed in most studies (e.g. Manganelli, 2005; Engle and Gallo, 2006; Hautsch,
2008; Cipollini et al., 2012) was the Box–Pierce–Ljung type portmanteau test (Box and Pierce, 1970; Ljung and Box, 1978;
Hosking, 1980) applied to the residuals or squared residuals. From the result of this paper, this approach is questionable
since the Box–Pierce statistic may not follow the usual χ2 distribution asymptotically under the null hypothesis. A simi-
lar criticism has been pointed out in the univariate case, see Li and Yu (2003) and the discussion in Duchesne and Pacurar
(2008). In fact, in a related context, it has been shown that the Box–Pierce–Ljung type test is invalid for GARCH models
(Li and Mak, 1994) and multivariate GARCH models (Ling and Li, 1997).

For diagnostic checking of multivariate ARMA models, Li and McLeod (1981) constructed a multivariate portmanteau
test by defining the residual autocorrelationmatrices and deriving their asymptotic distribution. Ling and Li (1997) adopted
a similar method to the case of multivariate GARCH models. In this paper, following the approach of Li and McLeod (1981)
and Ling and Li (1997), we derive the asymptotic distribution of residual autocorrelationmatrices in the VMEM and devise a
new multivariate portmanteau test for diagnostic checking. Similar to Li and Yu (2003), the result of this paper provides an
extension of the Box–Jerkinsmethodology to themore general VMEM. Interestingly, under a semiparametric setting, our re-
sult encompasses a special case in which the proposed test statistic is equivalent to that proposed by Li and Yu (2003) which
is based on a parametric specification. Since we do not assume any distributional assumption of the innovation except some
veryweakmoment conditions, the result of this paper is robust with regard to the conditional distribution of the innovation.

The rest of the paper is organized as follows. Section 2 presents the model. Section 3 derives the asymptotic distribution
of residual autocorrelation matrices in the VMEM and gives the new multivariate portmanteau test statistic that should be
useful for diagnostic checking. The relationship between the proposed test statistic and the Li and Yu (2003) test statistic
is discussed. Some simulation experiments are performed in Section 4 to assess the performance of the asymptotic result
in finite samples and an empirical example is also given in Section 5 to demonstrate that the commonly used multivariate
portmanteau test may lead to a misleading result in the case of the VMEM. Finally, we conclude in Section 6.

2. The model

Let xt = (x1t , . . . , xkt)T be a k-dimensional stationary and ergodic vector time series with non-negative components. The
VMEM with a semiparametric specification (Cipollini et al., 2012) for xt is defined as

xt = µt ⊙ εt = diag(µt)εt , (1)

where⊙ is theHadamard product and diag(a) denotes a diagonalmatrixwithmain diagonal equals vector a. The innovation
series εt = (ε1t , . . . , εkt)

T is a sequence of independent and identically distributed random vectors defined over a [0, +∞)k

support, with mean vector 1k and a general covariance matrix 6 = (σij)k×k (a nuisance parameter); 1k is a k× 1 vector with
all entries equal 1. Vector µt = (µ1t , . . . , µkt)

T
= E(xt | Ft−1) represents the conditional expectation of xt given Ft−1. It

depends only onFt−1 and θ = (θ1, . . . , θp)
T, whereFt−1 is a σ -field generated by {xt−1, xt−2, . . .} and θ is a p×1 parameter

vector ruling the dynamics of µt ; and is assumed to have continuous second-order derivatives almost surely.
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