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a b s t r a c t

In the fixed factor model for factor analysis (FA), common factor scores are treated as fixed
parameters. However, they cannot be estimated jointly with the other parameters, since
the maximum likelihood (ML) for the model diverges to infinity. In order to avoid the
divergence so that all parameters can be jointly estimated, we propose a constrained fixed
factormodel. Here, observations are classified into clusters, with each cluster characterized
by an equivalent factor score. The ML procedure with the proposed model is named fixed
clustered FA (FCFA). An iterative algorithm for FCFA is developed, which provides the ML
estimates of the factor loadings, unique variances, the classification of observations into
clusters, and the cluster factor scores. This FCFA can be viewed as the FA version of Reduced
K-means analysis (RKM), in which the principal components are extractedwhile clustering
observations. We compare FCFA, RKM, and a related procedure called Factorial K-means
analysis (FKM). We also provide real data examples, which show that FCFA outperforms
RKM and FKM in terms of classification accuracy. This result is attributed to the unique
variances in FCFA. In other words, the error variances are allowed to be unique to the
corresponding variables.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

For an n-individual × p-variable column-centered data matrix X, the factor analysis(FA) model can be expressed as

X = FΛ′
+ E (1)

(Mulaik, 2010). Here, F is the n×mmatrix containing factor scores,Λ is the p×m factor loadingsmatrix of full column rank,
and each row of E is a realization of a 1× p random error vector e′ random error vector e′, withm the number of factors and
m < p < n. When the distribution of e′ is assumed, it is typically the multivariate normal distribution, with the p × 1 zero
vector 0p as the mean vector:

e ∼ N(0p,Ψ). (2)

Here, the covariance matrix Ψ is a diagonal matrix, with

Ψ = diag{ψ1, . . . , ψp}. (3)

The diagonal elements of Ψ , ψ1, . . . , ψp, are called unique variances. The parameter matrices to be estimated in FA are Λ

andΨ . On the other hand, the factor scores in F are ordinality treated as random variables. In contrast, an FAmodel in which
F is regarded as a fixed parameter matrix was introduced by Lawley (1942) (see also Young, 1941). This model is called the
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fixed factor model (e.g., McDonald, 1979; Unkel and Trendafilov, 2010). In this paper, we focus on the fixed factor model.
The columns of the factor score matrix F are centered and orthonormal, with

1′

nF = 0m, (4)
1
n
F′F = Im, (5)

in the fixed factor model, where 1n denotes the n × 1 vector of ones and Im is the m × m identity matrix. The parameter
matrices to be estimated in themodel are F,Λ, andΨ . However, it is known that they cannot be jointly estimated (Anderson
and Rubin, 1956), as explained in the next section. In this paper, we constrain F = [f1, . . . , fn]′ so that the joint estimation
is feasible, while fi indicates the factor score vector for individual i.

The constraint we consider is that the n individuals in F are classified into a small number of clusters and the individuals
allocated to the same cluster have an equivalent score vector. This constrained fixed factor model underlies a proposed
maximum likelihood (ML) procedure, which we refer to as fixed clustered factor analysis (FCFA). The formulation of FCFA
is provided in Section 2. We also explain why a joint estimation is possible in FCFA. In Sections 3 and 4, we present the
algorithm for FCFA and assess the proposed model using a simulation study.

FCFA is useful for [1] finding the factors underlying variables and [2] clustering individuals, since the model achieves
these two purposes simultaneously. The same result can be achieved using two existing procedures, Reduced K-means
analysis (RKM) of De Soete and Carroll (1994) and Factorial K-means analysis (FKM) of Vichi and Kiers (2001). However,
these analyses are based on principal component analysis rather than FA. Thus, the term factors is replaced by components.
We discuss how FCFA is related to RKM and FKM in Section 5. RKM and FKM are least squares procedures, in contrast to
the ML-based FCFA. However, we show that the ML-version of RKM can be regarded as a special case of FCFA, with Eq. (3)
constrained to be proportional to Ip. In Section 6, we show that FCFA outperforms RKM and FKM in terms of the accuracy of
clustering when successively performing [1] and [2].

2. Fixed clustered factor analysis

Webegin this section by explainingwhy the parameters in the original fixed factormodel cannot all be jointly estimated.
Then, we formulate the proposed FCFA model. Lastly, we describe how joint estimation is possible in FCFA, with the
exception of one particular case.

Using (1)–(3), the log-likelihood for the fixed factor model is written as

LL(F,Λ,Ψ) ∝ −n
p

j=1

logψj − tr(X − FΛ′)Ψ−1(X − FΛ′)′

= −n
p

j=1

1
ψj

∥xj − Fλj∥
2, (6)

where xj denotes the jth column of X, λ′

j denotes the jth row of Λ, and ψj denotes the jth diagonal element of Ψ . However,
no maximum likelihood estimate (MLE) exists for (6), which is proved as follows. The estimate of the unique variance must
satisfy

ψj =
1
n
∥xj − Fλj∥

2. (7)

However, this becomes zero, causing (6) to diverge toward infinity as Fλj → xj so that xj = Fλj (Anderson and Rubin, 1956).
For example, λj can be filled with zeros, with the exception of the jth element taking s ≠ 0, and the jth row of F can be s−1xj,
which leads to (7) being equal to zero.

In the proposed FCFA, F is constrained so that (6) can be maximized to give the MLE of F,Λ, and Ψ . The constraint is
that the individuals in F (i.e., the n rows f′1, . . . , f

′
n), are classified into K clusters, with K < n. This constraint is formally

expressed as

F = GC. (8)

Here, G = (gik) is the n-individual × K -cluster membership matrix, with gik = 1 if individual i belongs to cluster k, and
gik = 0 otherwise:

gik = 0 or 1,G1K , and rank(G) = K , (9)

where rank(G) denotes the rank of G. Being equal to K implies that every cluster has at least one individual. On the other
hand, C = [c1, . . . , cr ]′ is a K × m matrix, with the kth row, ck, denoting the score vector of cluster k. That is, the factor
scores of the individuals belonging to cluster k are constrained to equal ck. This implies that each row vector of F = GC is
restricted to one of the K vectors, c′

1, . . . , c
′

K .



Download	English	Version:

https://daneshyari.com/en/article/6869445

Download	Persian	Version:

https://daneshyari.com/article/6869445

Daneshyari.com

https://daneshyari.com/en/article/6869445
https://daneshyari.com/article/6869445
https://daneshyari.com/

