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a b s t r a c t

Multivariate Fay–Herriot models for estimating small area indicators are introduced.
Among the available procedures for fitting linear mixed models, the residual maximum
likelihood (REML) is employed. The empirical best predictor (EBLUP) of the vector of area
means is derived. An approximation to the matrix of mean squared crossed prediction er-
rors (MSE) is given and four MSE estimators are proposed. The first MSE estimator is a
plug-in version of the MSE approximation. The remaining MSE estimators combine para-
metric bootstrap with the analytic terms of the MSE approximation. Several simulation
experiments are performed in order to assess the behavior of the multivariate EBLUP and
for comparing theMSE estimators. The developedmethodology and software are applied to
data from the 2005 and 2006 Spanish living condition surveys. The target of the application
is the estimation of poverty proportions and gaps at province level.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Surveys are designed for obtaining reliable estimates in the whole population or in some subpopulations called planned
domains. However, it is quite common in practice to use survey data for estimating indicators of non-planneddomains (small
areas) with small samples sizes. Small area estimation deals with inference problems for this kind of domains. In these cases,
direct estimators might have large sampling errors. Direct estimators can be improved by assuming regression models that
link all the sample data by introducing a relation between the variable of interest and a set of explanatory variables.

Linear mixed models use random area effects for the extra between-area variation of the data that is not explained by
the auxiliary variables. Often auxiliary individual information is not available, but data aggregated to the small areas can be
found in administrative registers. Then the model can be stated at the small area level. An area-level linear mixed model
with random area effects was first proposed by Fay andHerriot (1979) to estimate average per-capita income in small places
of the US. Since then, the Fay–Herriot model has been one of the most widely used models in small area estimation.

In recent years, many researchers have investigated applications of the Fay–Herriot model to small area estimation
problems.Without being exhaustive, we cite some papers dealingwith the Fay–Herriotmodel. Prasad and Rao (1990); Datta
and Lahiri (2000); Das et al. (2004), González-Manteiga et al. (2010), Jiang et al. (2011), Datta et al. (2011a) and Kubokawa
(2011) gave tools for measuring the uncertainty of model-based small area estimators. Datta et al. (2011b), Bell et al. (2013)
and Pfeffermann et al. (2014) studied the problem of benchmarking. Ybarra and Lohr (2008) proposed a new small area
estimator that accounts for sampling variability in the auxiliary information. Herrador et al. (2011) treated situations where
small areas are divided into two groups and domain random effects have different variances across the groups. Slud and
Maiti (2011) were interested on small area estimation based on left censored survey data.

Statisticians are often required to estimate correlated descriptive measures, like poverty or unemployment indicators.
Multivariate models take into account for the correlation of several variables and typically fit to this kind of situations.
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Some papers can be found in the literature of small area estimation where multivariate linear mixed models are employed.
Fay (1987) and Datta et al. (1991) compared the precision of small area estimators obtained from univariate models
for each response variable with the ones obtained by a multivariate model. Datta et al. (1996) used also a multivariate
Fay–Herriot model for obtaining hierarchical Bayes estimates of median income of four-person families for the US states.
González-Manteiga et al. (2008b) studied a class of multivariate Fay–Herriot model with a common random effect for all
the components of the target vector. They further introduced bootstrap approximations to prediction errors. This paper
introduces a class of multivariate Fay–Herriot models with one random effect per component of the target vector and
allowing for different covariance patterns between the components of the vector of randomeffects. This is a new and flexible
class of multivariate models that does not contain the models of González-Manteiga et al. (2008b) as particular cases.

Historical data give relevant information that can be used to obtain better small area estimators. Several authors have
proposed extensions of the Fay–Herriot model that borrow strength from time. Choudry and Rao (1989) introduced amodel
including several time instants and considering an autocorrelated structure for sampling errors. Rao and Yu (1994) proposed
amodel that borrows information across areas and over time. Ghosh et al. (1996) proposed a time correlated area levelmodel
to estimate the median income of four-person families for American states. Datta et al. (1999), You and Rao (2000), Datta
et al. (2002), Esteban et al. (2011, 2012), Marhuenda et al. (2013) and Morales et al. (2015) gave some extensions of the
Rao–Yu model with applications to the estimation of labor or poverty indicators. Singh et al. (2005) and Pfeffermann and
Burck (1990) considered models with time-varying random slopes obeying an autoregressive process. This paper applies
multivariate Fay–Herriot models to time correlated data. In this setup, the introduced multivariate models contain the
models proposed by Esteban et al. (2011) as particular cases.

The paper is organized as follows. Section 2 introduces themultivariate Fay–Herriotmodel and gives a residualmaximum
likelihood (REML) fitting algorithm. Unlike the model introduced by González-Manteiga et al. (2008b) with a common
random effect for all the components of the target variable, the new models have multivariate vectors of random effects
with the same dimension as the target variable and allowing for different correlation structures. Section 3 approximates
the matrix of mean squared crossed prediction errors (MSE) of the multivariate empirical best predictor (EBLUP) and gives
some estimators. The first MSE estimator is a plug-in derivation of the MSE approximation. The remaining MSE estimators
combine parametric bootstrapwith analytic terms appearing in theMSE approximation. Section 4 presents three simulation
experiments. The first simulation studies the behavior of themultivariate EBLUPs under different correlation structures. The
second simulation compares the performances of the MSE estimators proposed in Section 3. The third simulation studies
the robustness of the EBLUPs against departures from normality. Section 5 applies the developed methodology to data from
the Spanish Living Conditions surveys of 2005 and 2006. Two applications are presented. The target of the first application
is the estimation of 2006 poverty proportions and gaps. The second application jointly estimates 2005 and 2006 poverty
proportions. Section 6 gives some concluding remarks. The Appendix contains detailed proofs of main results.

2. Multivariate Fay–Herriot models

Let U be a finite population partitioned into D domains U1, . . . ,UD. Let µd = (µd1, . . . µdR)
′ be a vector of characteristics

of interest in the domain d and let yd = (yd1, . . . ydR)′ be a vector of direct estimators of µd. The multivariate Fay–Herriot
model is defined in two stages. The sampling model is

yd = µd + ed, d = 1, . . . ,D, (1)

where the vectors ed ∼ N (0, Ved) are independent and the R × R covariance matrices Ved are known. Moreover, it is
assumed that theµdr ’s are linearly related to pr explanatory variables associated to the rth characteristic in the domain d. Let
xdr = (xdr1, . . . , xdrpr )be a rowvector containing the pr explanatory variables forµdr and let xd = diag (xd1, . . . , xdR)R×p with
p =

R
r=1 pr . Let βr be a column vector of size pr containing the regression parameters for µdr and let β =


β ′

1, . . . , β
′
r

′

p×1.
González-Manteiga et al. (2008b) considered the linking model

µd = xdβ + 1Rvd, vd
ind
∼ N(0, σ 2

v ), d = 1, . . . ,D, (2)

where 1n is the n×1 vectorwith all elements equal to 1. This paper introducesmultivariate Fay–Herriotmodels by assuming
(1) and substituting the condition (2) by the more realistic linking model

µd = xdβ + ud, ud
ind
∼ N(0, Vud), d = 1, . . . ,D, (3)

where the vectors ud’s are independent of the vectors ed’s. The R × R covariance matrices Vud depend on m unknown
parameters, θ1, . . . , θm, with 1 ≤ m ≤

R(R−1)
2 + R. Let In be the n × n identity matrix, δℓd be the Kronecker delta,

y = (y1, . . . , yd)′ be the vector of response variables and define

u = col
1≤d≤D

(ud), e = col
1≤d≤D

(ed), ud = col
1≤r≤R

(udr), ed = col
1≤r≤R

(edr),

X = col
1≤d≤D

(xd), Zd = col
1≤ℓ≤D

(δℓdIR), Z = col′
1≤d≤D

(Zd) = IDR, Vu = diag
1≤d≤D

(Vud),

where col and col′ are matrix operators stacking by columns and rows respectively.
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