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a b s t r a c t

Estimators for differential entropy are proposed. The estimators are based on the second
order expansion of the probability mass around the inspection point with respect to the
distance from the point. Simple linear regression is utilized to estimate the values of density
function and its second derivative at a point. After estimating the values of the probability
density function at each of the given sample points, by taking the empirical average of
the negative logarithm of the density estimates, two entropy estimators are derived. Other
entropy estimatorswhich directly estimate entropy by linear regression, are also proposed.
The proposed four estimators are shown to perform well through numerical experiments
for various probability distributions.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Let X be a p-dimensional randomvariablewith probability density function (pdf) f (x), then its differential entropy (Cover
and Thomas, 1991; Shannon, 1948) is defined by

H(f ) = −


f (x) ln f (x)dx. (1)

We assume that H(f ) is well-defined and finite. The differential entropy plays a central role not only in information and
communication theory, but also in statistics (Tarasenko, 1968; Vasicek, 1976; Hino et al., 2013), signal processing (Comon,
1994; Learned-Miller and Fisher, 2004), machine learning and pattern recognition (Mannor et al., 2005; Rubinstein and
Kroese, 2004; Hino and Murata, 2010, 2013). For a concrete example, the differential entropy is used as a criterion for
independence in the literature of independent component analysis (ICA; Comon, 1994; Hyvärinen et al., 2001). In ICA,mixed
signals are decomposed into statistically independent signals. A sumof themarginal entropies

p
k=1 H(Xk) is anupper bound

of the joint entropy H(X1, . . . , Xp), where p is the number of observed source signals. Since the gap between the sum of
marginal entropies and joint entropy is zero if and only if signals are independent, signal decomposition is sometimes done
by transforming the p observed signals into p signals Xk, k = 1, . . . , p so that the quantity

p
k=1 H(Xk) − H(X1, . . . , Xp)

is minimized. The entropy can be estimated by plugging in the estimate of a pdf, however, density estimation for high
dimensional data is difficult and computationally demanding. Direct entropy estimators often offer better results.

Consider the problem of estimating the entropyH(f ) using a set of observed samplesD = {xi}ni=1, where xi, i = 1, . . . , n
are realizations of a random variable X with a pdf f (x). Since entropy estimation is often required in exploratory data
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analysis, it is preferable not to assume any specific form of probability distribution behind the data, and therefore non-
parametric approach is often of the choice. There are several non-parametricmethods for estimating the differential entropy
of a continuous random variable. One of the simplest methods is the plug-in estimate, which is based on a density estimate
f̂ (x) of f (x). Once we obtain an estimate f̂ (x) using samples D , the differential entropy can be estimated by numerically
integrating f̂ (x) ln f̂ (x). Since numerical integration is unstable and computationally demandingwhen p, the dimensionality
of X , is large, it is suggested by Joe (1989) to use re-substitution

Ĥ(D) = −
1
n

n
i=1

ln f̂ (xi) (2)

instead of numerical integration. With a kernel density estimate f̂κ(x), which will be defined later, some asymptotics are
investigated for the plug-in estimator Ĥ(D) with univariate (Ahmad and Lin, 1976) and multivariate (Joe, 1989) cases,
respectively.

Another popular approach for entropy estimation is based on the k-nearest neighbor (k-NN) method. An entropy
estimator using 1-NN is proposed by Kozachenko and Leonenko (1987), and its mean-square consistency is proved for any
dimension. This result is extended to develop a k-NN-based estimator (Goria et al., 2005),which includes the spacing entropy
estimator (Vasicek, 1976; Dudewicz and van derMeulen, 1981; Hall, 1986) as a special case of p = 1. Formore extension and
theoretical developments, see Beirlant et al. (1997); Györfi and van der Meulen (1987); Paninski (2003); Pérez-Cruz (2008)
for examples. Due to the resemblance to the proposedmethod, the k-NN entropy estimator is explained later in more detail.

In this paper, we propose novel non-parametric entropy estimators based on the second order expansion of probability
mass function and simple linear regression. The proposed methods are conceptually simple with almost no tuning
parameter.

The rest of this paper is organized as follows. Section 2 formulates the problem of density and entropy estimation.
In Section 3, novel entropy estimators based on second order expansion of probability mass function and simple linear
regression are proposed. Experimental results are given in Section 4. The last section is devoted to concluding remarks.

2. Preliminary and notation

As a building block of an entropy estimator, consider the problem of estimating pdf f (z) at an inspection point z ∈ Rp

from a set of observations D = {xi}ni=1.
Let ∥xi − z∥ be the Euclidean distance between the inspection point z and the ith sample xi, and let b(z; ε) = {x ∈

Rp
| ∥x − z∥ < ε} be an ε-ball centered at z with volume |b(z; ε)| = cpεp, where cp = πp/2/0(p/2 + 1), and 0( · ) is the

gamma function. Denote the probability mass contained within the ε-ball centered at z by

qz(ε) =


x∈b(z;ε)

f (x)dx. (3)

Expanding the integrand, we obtain

qz(ε) =


x∈b(z;ε)


f (z) + (x − z)⊤∇f (z) + O(ε2)


dx

= |b(z; ε)|

f (z) + O(ε2)


= cpεpf (z) + O(εp+2).

In the above expansion, (x− z) is of order ε because the integration is within the ε-ball. The termwith first derivative of the
density function vanishes due to symmetry. Ignoring the second term in the expansion and approximating the probability
mass qz(ε) with the ratio of the number of points within the ε-ball, we obtain a density estimator

f̂ε(z) =
kε

ncpεp
, (4)

where kε is the number of samples that fall in the ε-ball. This estimator is nothing but the kernel density estimator (Wand
and Jones, 1994b)

f̂κ(x) =
1

nεp

n
i=1

κ(∥x − xi∥/ε) (5)

with the hard window kernel function

κ(x) =
1
cp
1{∥x∥ ≤ 1}, (6)

where 1{·} is the indicator function. Here ε is the bandwidth parameter in the context of kernel density estimator. On the
other hand, when k, the number of neighbors from the inspection point z, is fixed instead of ε, the estimator f̂ε(z) in Eq. (4)
is rewritten as f̂k(z) = k/(ncpε

p
k), where εk is determined by the distance from the inspection point to its k-th nearest point.

The estimator f̂k(z) is called the k-NN density estimator (Loftsgaarden and Quesenberry, 1965; Mack and Rosenblatt, 1979;
Moore and Yackel, 1977).
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