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a b s t r a c t

A class of goodness-of-fit tests whose test statistic is an L2 norm of the difference of the
empirical characteristic function of the sample and a parametric estimate of the charac-
teristic function in the null hypothesis, is considered. The null distribution is usually esti-
mated through a parametric bootstrap. Although very easy to implement, the parametric
bootstrap can become very computationally expensive as the sample size, the number of
parameters or the dimension of the data increase. It is proposed to approximate the null
distribution through a weighted bootstrap. The method is studied both theoretically and
numerically. It provides a consistent estimator of the null distribution. In the numerical ex-
amples carried out, the estimated type I errors are close to the nominal values. The asymp-
totic properties are similar to those of the parametric bootstrap but, from a computational
point of view, it is more efficient.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction 1

Since the characteristic function (cf) characterizes the distribution of a random variable and the empirical characteristic 2

function (ecf) converges to the population cf,many goodness-of-fit (gof) tests are based onmeasuring discrepancies between 3

the ecf and an estimator of the cf of the population in the null hypothesis. Specifically, let X1, X2, . . . , Xn be independent and 4

identically distributed (iid) random d-dimensional vectors, for some fixed integer d ≥ 1. For testing the composite null 5

hypothesis 6

H0 : the law of X1 ∈ F , 7

where F is a parametric family, 8

F = {F(x; θ), x ∈ Rd, θ ∈ Θ}, Θ ⊆ Rp, 9

F(x; θ) stands for the cumulative distribution function (cdf) and θ is assumed to be unknown, we consider the test 10

Ψ = Ψ (X1, . . . , Xn), 11

Ψ =


1, if Dn,w(θ̂n) ≥ dn,w,α,
0, otherwise,

(1) 12

where dn,w,α is the 1 − α percentile of the null distribution of Dn,w(θ̂n), and 13

Dn,w(θ̂n) = n


|cn(t) − c(t; θ̂n)|
2w(t)dt. (2) 14
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In (2), cn(t) = n−1n
j=1 exp(it

′Xj) is the ecf of the sample, c(t; θ) denotes the characteristic function of F(x; θ), θ̂n is a1

consistent estimator of θ and w(t) is a finite measure (a density function often) on Rd, which may depend on θ . Also, in2

what follows, an unspecified integral denotes integration over the whole space Rd. Some general properties of the test Ψ3

have been studied in Jiménez-Gamero et al. (2009). Some special cases of (1) are the tests in Epps and Pulley (1983), Bar-4

inghaus and Henze (1988), Gürtler and Henze (2000), Meintanis (2004), Klar andMeintanis (2005), Epps (2005), Matsui and5

Takemura (2005), Matsui and Takemura (2008), Fragiadakis and Meintanis (2011), among others.6

In spite of the good statistical properties of the test Ψ (it is consistent against fixed alternatives and able to detect local7

alternatives converging to the null at the rate n−1/2), from a practical point of view, it possesses certain computational8

difficulties. A main problem is the calculation of the critical point dn,w,α , because the exact null distribution of the tests9

statistic Dn,w(θ̂n) is unknown. Since in most cases the asymptotic null distribution does not provide a useful approximation,10

it is usually consistently approximated by a parametric bootstrap (PB).11

Although very easy to implement, the PB can become very computationally expensive as the sample size, the number12

of parameters or the dimension of the data increase. This problem is not specific to the test Ψ , the same problem arises13

when one instead consider a test based on comparing the empirical cdf and a parametric estimator of the cdf under the null14

hypothesis. To overcome this difficulty for gof tests based on the empirical cdf, Kojadinovic and Yan (2012b) have proposed15

to approximate the null distribution of the test statistics by a computationally more efficient estimator, obtained by using16

a weighted bootstrap (WB), in the sense of Burke (2000). In view of the good properties of the WB in Kojadinovic and Yan17

(2012b), it is also expected toworkwell for approximating the null distribution of the test statistics considered in this paper.18

Because of this reason, the purpose of this paper is to investigate, both theoretically and empirically, the use of a WB for19

approximating the null distribution of the test statistic (2).20

Since21

Dn,w(θ̂n) =
1
n

n
j=1

n
k=1

h(Xj, Xk; θ̂n), (3)22

where23

h(x, y; θ) = u(x − y) − u0(x; θ) − u0(y; θ) + u00(θ),

u0(x; θ) =


u(x − y)dF(y; θ), u00(θ) =


u(x − y)dF(x; θ)dF(y; θ),

(4)24

and u(t) is the real part of the cf of a random vector with density function w, that is, u(t) =

cos(x′t)w(x)d(x), the test25

statistic 1
nDn,w(θ̂n) resembles a degree-2 V-statistic. In the statistical literature there are several papers dealing with the26

consistency of the WB distribution estimator of U-statistics and V-statistics. Let X1, . . . , Xn be iid and let27

Vn(h) =
1
n2


1≤j,k≤n

h(Xj, Xk)28

be a degree-2 V-statistic. Assume that it is degenerate, that is, E{h(X1, x)} − E{h(X1, X2)} = 0. Delhing and Mikosch (1994)29

(see also Hušková and Janssen, 1993) showed that if ξ1, . . . , ξn are iid with E(ξ1) = 0 and var(ξ1) = 1, independent of30

X1, . . . , Xn, then the conditional distribution, given X1, . . . , Xn, of31

1
n


1≤j,k≤n

h(Xj, Xk)ξjξk32

consistently estimates that of nVn(h). In the light of this result, one may be tempted to estimate the null distribution of33

Dn,w(θ̂n) by means of the conditional distribution, given X1, . . . , Xn, of34

W =
1
n


1≤j,k≤n

h(Xj, Xk; θ̂n)ξjξk. (5)35

It will be shown that this is not the case, since the presence of θ̂n has an effect on the asymptotic null distribution of Dn,w(θ̂n)36

that it is not captured by the conditional distribution ofW . We instead proceed as follows. In a first step we note that, when37

H0 is true,38

Dn,w(θ̂n) = D1,n,w(θ) + oP(1),39

where 1
nD1,n,w(θ) =

1
n2


1≤j,k≤n h
c(Xj, Xk; θ) is a degenerate degree-2 V-statistic and θ is the limit of θ̂n. Now we could40

imitate the procedure in Delhing and Mikosch (1994) to get a consistent distribution estimator of Dn,w(θ̂n) by considering41

the conditional distribution, given X1, . . . , Xn, of42

1
n


1≤j,k≤n

hc(Xj, Xk; θ)ξjξk.43

A problem with this approach is that the kernel hc depends on the unknown true value of θ . Moreover, it will be seen44

that even the expression of hc can be hardly computed. As it will be seen later, hc can be often approximated by an easily
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