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h i g h l i g h t s

• A two-stage subsampling-extrapolation bandwidth selection procedure is proposed.
• An automatic nested cross-validation method is developed to select the subsample size.
• The extrapolated bandwidth selectors achieve a smaller mean square error.
• The second-order extrapolated bandwidth selector has a relative convergence rate n−1/4.
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a b s t r a c t

Cross-validation methodologies have been widely used as a means of selecting tuning
parameters in nonparametric statistical problems. In this paper we focus on a newmethod
for improving the reliability of cross-validation. We implement this method in the context
of the kernel density estimator, where one needs to select the bandwidth parameter so
as to minimize L2 risk. This method is a two-stage subsampling-extrapolation bandwidth
selection procedure, which is realized by first evaluating the risk at a fictional sample size
m (m ≤ sample size n) and then extrapolating the optimal bandwidth from m to n. This
two-stage method can dramatically reduce the variability of the conventional unbiased
cross-validation bandwidth selector. This simple first-order extrapolation estimator is
equivalent to the rescaled ‘‘bagging-CV’’ bandwidth selector in Hall and Robinson (2009)
if one sets the bootstrap size equal to the fictional sample size. However, our simplified
expression for the risk estimator enables us to compute the aggregated risk without any
bootstrapping. Furthermore, we developed a second-order extrapolation technique as an
extension designed to improve the approximation of the true optimal bandwidth. To select
the optimal choice of the fictional size m given a sample of size n, we propose a nested
cross-validation methodology. Based on simulation study, the proposed new methods
show promising performance across a wide selection of distributions. In addition, we also
investigated the asymptotic properties of the proposed bandwidth selectors.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Cross-validationmethodology has long been a popular method for selecting tuning parameters in non and semiparamet-
ric models. However, it has also been criticized for its high variability and its corresponding tendency to overfit the data.
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This paper develops newmethods for the improvement of the conventional cross-validation procedures. It is based on a
blending ofU-statistic estimation and asymptotic theory. These newmethods are realized by estimating the cross-validation
risk with small training sets, then extrapolating the results to the desired sample size. The extrapolation step requires
some asymptotic theory, but only the rate of convergence, not any unknown constants. We will show that such a two-
stage procedure can dramatically reduce the high variability and overfitting that is the major liability of the conventional
unbiased cross-validation.

We view our results as part of the following paradigm: when one is estimating nonparametrically a statistical property
of samples of target size m, such as the risk inherent in using a particular model, then one can do a much more accurate
estimation when the target m is much smaller than the actual sample size n. The intuition is that there are many, many
more subsamples of size n/2, say, than there are subsamples of size n or n − 1.

Tomotivate our extrapolationmethodology, wewill here show how it works when used in risk estimation in the context
of nonparametric kernel density estimation. In the process we will also show that for this problem the risk function for
arbitrary m is surprisingly simple. In particular, cross-validation estimation at an arbitrary training sample size of m does
not require repeated subsampling at sizem, thereby greatly speeding up and improving accuracy of themethodswepropose.
We believe this to be a major new insight in the kernel density estimation literature.

To simplify notation, consider a univariate random variable X ∈ R. In statistical practice, we often know little about the
underlying distribution of X which is crucial in exploratory or inferential analysis (Silverman, 1986). So, our main task is to
estimate the unknown density function f (x) based on a set of observations. In this paper, we focus on the nonparametric
kernel density estimator (Fix and Hodges, 1951). Given an i.i.d. sample of size n, Xn = (X1, . . . , Xn), the kernel density
estimator at x is defined for a kernel K as

f̂h(x | Xn) = n−1
n

i=1

Kh(Xi − x) (x ∈ R), (1.1)

where h > 0 is called the bandwidth parameter. Here Kh(t) = h−1K(t/h) and function K is the kernel function. As the choice
of K does not greatly affect the density estimation (Hardle et al., 1994), throughout this paper we consider a commonly used
location kernel function, the Gaussian kernel.

Kh(x − x0) = (h
√
2π)−1e−(x−x0)2/(2h2) ∼ N(x0, h2). (1.2)

However, our proposed methodologies do not depend on the choice of K , and the theoretical results in this paper will be
stated in terms of an arbitrary symmetric kernel function K of order r (r ≥ 2). For the definition of the order of a kernel
function, please see Turlach (1993).

Although one has free choice of the kernel function in a density estimator, the choice of the bandwidth h is generally
viewed as much more crucial. In order to select the optimal smoothing parameter h, we need to evaluate how closely f̂h can
approximate f for a given data set. Most bandwidth selectors are based on first choosing a risk function that measures the
error made in using a particular bandwidth h. One can then estimate the risk function for a given data set and choose the
bandwidth that minimizes the empirical risk. Such bandwidth selectors are referred to as data-driven methods.

The main result of this paper is to propose a two-stage subsampling-extrapolation bandwidth selection procedure. This
work is closely related to the rescaled bagging cross-validation method of Hall and Robinson (2009) and the partitioned
cross-validation method of Marron (1987). Recent work involving bagging and subsampling in problems other than kernel
density estimation includes Meinshausen and Buhlmann (2010) and Shah and Samworth (2012). Unlike the bandwidth
selectors discussed in Park and Marron (1990) and Sheather and Jones (1991), which are based on asymptotic theory, our
proposed methodology is a hybrid of the cross-validation method and the asymptotic theory. As such it does not require
the estimation of R(f ′′) or a third-stage estimation of R(f ′′′). (By convention, we denote R(g) =


g2(x)dx for any given

function g .) Hence, it is more straightforward to implement than plug-in estimators. Most importantly, it can be used in a
wide variety of problems where plug-in methodology is not available.

We present an extensive simulation study in Section 4.1 to compare the proposed methods with the conventional
cross-validation estimator. It will be seen that our bandwidth selectors achieve a smaller expected integrated square
error that is much closer to the theoretical optimum than the standard cross-validation. Moreover, a comparison of
the proposed methods to indirect cross-validation (Savchuk et al., 2011, 2010; Mammen et al., 2012) can be found in
Section 4.2. In addition, we compare our methods to the asymptotic selection of the subsample sizem that was described in
Marron (1987).

2. U-statistic estimate of L2 risk

In this section, we will derive a simple U-statistic form estimator for the risk that arises from L2 distance. It is a
new representation for the unbiased risk estimator and enables us to calculate the aggregated risk at subsamples of size
m (m ≤ n) much more efficiently than the repeated bootstrapping done in Hall and Robinson (2009) or the partitioning
method used in Marron (1987).
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