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a b s t r a c t

Tomodel binomial datawith large frequencies of both zeros and right-endpoints, Deng and
Zhang (in press) recently extended the zero-inflated binomial distribution to an endpoint-
inflated binomial (EIB) distribution. Although they proposed the EIB mixed regression
model, the major goal of Deng and Zhang (2015) is just to develop score tests for testing
whether endpoint-inflation exists. However, the distributional properties of the EIB have
not been explored, and other statistical inference methods for parameters of interest were
not developed. In this paper, we first construct six different but equivalent stochastic
representations for the EIB random variable and then extensively study the important
distributional properties. Maximum likelihood estimates of parameters are obtained by
both the Fisher scoring and expectation–maximization algorithms in the model without
covariates. Bootstrap confidence intervals of parameters are also provided. Generalized and
fixed EIB regressionmodels are proposed and the corresponding computational procedures
are introduced. A real data set is analyzed and simulations are conducted to evaluate the
performance of the proposed methods. All technical details are put in a supplemental
document (see Appendix A).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction 1

Modeling count data with many zeros are common in many fields including medicine, public health, epidemiology, Q2 2

ecology, sociology, psychology, econometrics, agriculture, engineering, manufacturing, and road safety. A large number 3

of statistical methodologies have been developed to analyze such data. Existing literature on this issue can be roughly 4

categorized into two classes. The first class focuses on the development of distributional properties and the relevant 5

statistical inferencemethodswithout considering the covariate. The other class is to propose various zero-inflated regression 6

models to account for the covariate effect. The zero-inflated Poisson (ZIP) regression model (Mullahy, 1986; Lambert, 1992) 7

and its variants are quite popular in practice. When the counts have an upper bound, the ZIP regression model is no longer 8

appropriate. Hall (2000) and Vieira et al. (2000) introduced a zero-inflated binomial (ZIB) regression model (also called 9

Bernoulli–Binomialmixturemodel)whileHall andBerenhaut (2002) developed ZIBmixedmodels. Ospina and Ferrari (2010) 10

proposed zero- or/and one-inflated beta distributions while Ospina and Ferrari (2012) studied a general class of regression 11

models for continuous proportions when the data contain many zeros or ones. Adell et al. (2012) proposed a kind of one- 12

inflated bivariate beta distribution to analyze matching scores related to retinal image identification in lambs. 13
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However, in practice, we may encounter discrete proportion data with extra zeros and extra ones (or extra right1

endpoints). For example, in the epidemiological study, the incidence of an infective disease in some families is either zero2

or 100% during a period of infection (Deng and Zhang, in press). That is, besides the structural zeros and the structural3

right-endpoints, there are not only extra zeros (i.e., left-endpoints) but also extra right-endpoints. As the second example, in4

Section 6we shall introduce thewhitefly data set, in which the number of survivingwhiteflies demonstrate both extra zeros5

and extra right-endpoints because of the efficacy of the pesticide. In otherwords, if the pesticide has a strong effect, it usually6

kills all the whiteflies in one cage, causing more zeros in the real data; while in the control group where no pesticide has7

been administrated, all the adultwhiteflieswill survive, resulting inmore right-endpoints. In fact, there are 640 observations8

with 339 zeros (53%) and 76 right-endpoints (12%).9

Thus, it is inappropriate to model such binomial data with excess of zeros and right-endpoints by using ZIB distribution10

and zero- or/and one-inflated beta distribution. As a generalization of the widely discussed ZIB, a so-called zero–one inflated11

binomial (ZOIB) distribution was proposed recently by Deng and Zhang (in press), which was the unique paper involving12

the ZOIB model to date. To avoid confusion, hereafter, we call the ZOIB distribution the endpoint-inflated binomial (EIB)13

distribution. Although they proposed the EIB mixed regression, the major goal of Deng and Zhang (in press) is just to14

develop score statistics for testing whether endpoint-inflation exists. However, the distributional theory and corresponding15

properties of the EIB have not yet been explored, and other statistical inferencemethods for parameters of interest were not16

well developed. The main objective of this paper is to fill the gap.17

For convenience, in this paper we denote a random variable ξ following a degenerate distribution with all mass at a18

single point c by ξ ∼ Degenerate(c), whose probability mass function (pmf) is Pr(ξ = c) = 1. Let ξ0 ∼ Degenerate(0),19

ξ1 ∼ Degenerate(m), X ∼ Binomial(m, p) and they are independent. A discrete random variable Y is said to have an EIB20

distribution, denoted by Y ∼ EIB(φ0, φ1;m, p), if its pmf is (Deng and Zhang, in press)21

f (y|φ0, φ1;m, p) = φ0 Pr(ξ0 = y)+ φ1 Pr(ξ1 = y)+ φ2 Pr(X = y)22

=


φ0 + φ2(1 − p)m, if y = 0,

φ2


m
y


py(1 − p)m−y, if y = 1, . . . ,m − 1,

φ1 + φ2pm, if y = m,
0, otherwise

23

=

φ0 + φ2(1 − p)m


I(y = 0)+ φ2


m
y


py(1 − p)m−yI(0 < y < m)24

+ (φ1 + φ2pm)I(y = m), (1.1)25

where φ0 ∈ [0, 1) and φ1 ∈ [0, 1) respectively denote the unknown proportions for incorporating extra zeros and ex-26

tra right endpoints (or binomial denominators) than those allowed by the standard binomial distribution, and φ2 =̂ 1 −27

φ0 − φ1 ∈ (0, 1]. The EIB(φ0, φ1;m, p) is a mixture of two degenerate distributions Degenerate(0), Degenerate(m) and28

a Binomial(m, p) distribution. In particular, when φ0 = 0, the EIB distribution is reduced to right-endpoint inflated bino-29

mial (REIB) distribution (denoted by REIB(φ1;m, p)); when φ1 = 0, the EIB distribution is reduced to the ZIB distribution30

(denoted by ZIB(φ0;m, p)); when φ0 = φ1 = 0, the EIB distribution becomes the standard binomial distribution.31

The remainder of this paper is organized as follows. Section 2 provides six different but equivalent stochastic repre-32

sentations for the EIB random variable. Section 3 develops important distributional properties. In Section 4, we introduce33

the Fisher scoring algorithm and derive an expectation–maximization (EM) algorithm to find the maximum likelihood es-34

timates (MLEs) of parameters in the model without any covariates. Bootstrap confidence intervals are also provided. In35

Section 5, generalized and fixed EIB regression models are proposed and the corresponding computational procedures are36

provided. In Section 6, we analyze a real data set. In Section 7, simulation studies are conducted to evaluate the performance37

of the proposed methods. A discussion is given in Section 8. All technical details are put in the supplemental document (see38

Appendix A).39

2. Six different stochastic representations of the EIB random variable40

In this section,wewill establish six different but equivalent stochastic representations (SR) for the discrete randomvariable41

Y ∼ EIB(φ0, φ1;m, p).42

2.1. Mixture of Degenerate(0), Degenerate(m) and Binomial(m, p)43

Let z = (Z0, Z1, Z2)⊤ ∼ Multinomial (1;φ0, φ1, φ2), X ∼ Binomial(m, p), and z and X be independent (denoted as44

z X). We can show that the first SR of the random variable Y ∼ EIB(φ0, φ1;m, p) is given by45

Y d
= Z0 · 0 + Z1 · m + Z2X = mZ1 + Z2X =

0, with probability φ0,
m, with probability φ1,
X, with probability φ2,

(2.1)46
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