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a b s t r a c t

We consider regressionmodels with a group structure in explanatory variables. This struc-
ture is commonly seen inpractice, but it is only recently realized that taking the information
into account in the modeling process may improve both the interpretability and accuracy
of the model. In this paper, we study a new approach to group variable selection using
random-effect models. Specific distributional assumptions on random effects pertaining
to a given structure lead to a new class of penalties that include some existing penalties.
We also develop an efficient computational algorithm. Numerical studies are provided to
demonstrate better sensitivity and specificity properties without sacrificing the prediction
accuracy. Finally, we present some real-data applications of the proposed approach.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction 1

Q2

Variable selection is an important issue in statistical modeling, and many penalized methods have been proposed as 2

tools for variable selection and estimation. Tibshirani (1996) introduced the least-absolute shrinkage and selection operator 3

(LASSO), which performs shrinkage and variable selection simultaneously. It is well known that LASSO tends to select a 4

model with more variables than the true underlying model. To overcome the deficiency of variable selection via the LASSO, 5

various other penalized approaches have been proposed and demonstrated to achieve the oracle property in Fan and Li 6

(2001). These include the smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001), the adaptive LASSO (Zou, 2006), the 7

Bridge (Huang et al., 2008) and the minimax concave penalty (MCP) (Zhang, 2010). Recently, Lee and Oh (2014) introduced 8

an approach to variable selection using random-effectmodels. Themodel provides awider andmore flexible class of penalty 9

functions, including the LASSO as a special case and a new unbounded penalty at the origin, and it achieves oracle variable 10

selection without losing prediction accuracy. 11

In many regression problems, the explanatory variables often possess a natural group structure. For example, 12

(i) categorical factors are often represented by a group of indicator variables, and (ii) to capture flexible functional shapes, 13

continuous factors can be represented by a linear combination of basis functions such as splines or polynomials. In these 14

situations, the problem of selecting relevant variables is that of selecting groups rather than selecting individual variables. 15

Depending on the situation, the individual variables in a groupmayormaynot bemeaningful scientifically. If they are not,we 16

are typically not interested in selecting individual variables and the interest is limited to group selection. In fact, most recent 17

papers considered only this selection problem; see, e.g. Yuan and Lin (2006), Wang et al. (2007), Wang and Leng (2008) and 18

Huang et al. (2012). However, if the individual variables are meaningful, then wewould be interested in selecting individual 19

variables within each selected group; we refer to this as bi-level selection (Breheny and Huang, 2009; Huang et al., 2012). 20
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In this paper, we introduce how the group and bi-level selections can be achieved using the random-effect model1

approach. Specific distributional assumptions reflecting a given structure on the random effects produce a flexible class of2

penalties that includes, for example, the group LASSOand groupBridge as special cases. First,we study random-effectmodels3

for group-only selection. Second, we propose random-effect models for bi-level selection, which enable simultaneous4

selection at both the group level and the variable level within each selected group. Unlike the existing penalized approaches,5

the use of random effects makes it obvious how sparseness at group and variable levels is achieved. In addition, we show6

some applications of the proposed random-effect model approaches.7

The rest of the paper is organized as follows. We review the penalty approach and describe the random-effect model8

approach for structured variable selection in Section 2. Section 3 describes the implied penalties derived from the random-9

effect models and the computational algorithms to evaluate the proposed estimate. In Sections 4 and 5, we show the results10

of the simulated and real data analysis, respectively. Concluding remarks are given in Section 6.11

2. Methods for group variable selection12

Suppose that the explanatory variables can be divided into K groups, and the outcome y = (y1, . . . , yn)T has mean13

µ = (µ1, . . . , µn)
T , which follows a generalized linear model (GLM) with link function ηi ≡ h(µi), such that we have linear14

predictor15

η = Xβ = X1β1 + · · · + XKβK , (1)16

where η = (η1, . . . , ηn)
T
∈ Rn is the vector of linear predictors; X = (X1, . . . ,XK ) ∈ Rn×p is the design matrix of the17

predictors; β = (β1, . . . ,βK )T ∈ Rp is the vector of regression coefficients. Here, Xk ∈ Rn×pk and βk ∈ Rpk are the18

corresponding design matrix and vector of coefficients for the kth group, respectively. Note that with this GLM specification19

our method immediately works with various types of data, including continuous, binary and count data.20

2.1. Penalty approach21

We first review penalized maximum likelihood approaches to group variable selection, which can be achieved by22

maximizing23

Qλ(β) = ℓ(β)−

K
k=1

Jλk(∥βk∥2), (2)24

where ℓ(β) =
n

i=1 log fφ(yi|β) is the corresponding log-likelihood, with fφ(yi|β) being the density function with the25

dispersion parameter φ, λk > 0 is the regularization parameter of the kth group and ∥ · ∥2 stands for the ℓ2-norm. Yuan26

and Lin (2006) proposed the group LASSO, using penalty function Jλk(t) = λkt, t > 0. To adjust for different group sizes27

they chose λk ≡ λ
√
pk, with λ > 0. The group LASSO can be constructed by applying the LASSO penalty to the ℓ2-norm28

of sub-coefficients within each group. For other methods, Wang et al. (2007) and Huang et al. (2012) proposed the group29

SCAD and group MCP with penalty function Jλk(·) associated with the SCAD and MCP penalty functions, respectively. These30

penalties enforce sparsity at group level only, but are incapable of selecting important variables within the selected groups.31

To achieve bi-level selection, Huang et al. (2012) introduced the following ℓ1-norm criterion32

Qλ(β) = ℓ(β)−

K
k=1

Jλk(∥βk∥1), (3)33

where ∥·∥1 stands for the ℓ1-norm. The so-called groupBridge ofHuang et al. (2009) is obtained by using Jλk(t) = λktν, t > 034

for λk = λp1−ν
k . For later comparisons with other methods we use a commonly suggested value ν = 0.5. Another35

examples are the ℓ1-norm group SCAD and MCP proposed by Huang et al. (2012), where Jλk(·) are SCAD and MCP functions,36

respectively.37

Another approach for bi-level selection is to combine both the group penalty and individual variable penalty. As a special38

case, Friedman et al. (2010) proposed the sparse group LASSO, which is defined as a maximizer of39

Qλ(β) = ℓ(β)− λ1

K
k=1

√
pk∥βk∥2 − λ2

K
k=1

pk
j=1

|βkj|, (4)40

where λ1 ≥ 0 and λ2 ≥ 0 are regularization parameters. The group LASSO penalty can be replaced with any group penalties41

in (2), and similarly the LASSO penalty for variable selection can be replaced with any penalties such as SCAD, MCP and42

Bridge.43
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