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a b s t r a c t

Policy decisions regarding allocation of resources to subgroups in a population, called
small areas, are based on reliable predictors of their underlying parameters. However, in
sample surveys, the information to estimate reliable predictors is often insufficient at the
level of the small areas. Hence, parameters of the subgroups are often predicted based
on the coarser scale data. In view of this, there is a growing demand for reliable small
area predictors by borrowing information from other areas. These models are commonly
based on either linearmixedmodels (LMMs) or generalized linearmixedmodels (GLMMs).
The frequentist analysis of LMM, a special case of GLMM, is computationally difficult. On
the other hand, the advent of the Markov chain Monte Carlo algorithm has made the
Bayesian analysis of LMMandGLMMcomputationally convenient. Recently developeddata
cloning method provides a frequentist approach to complex mixed models which is also
computationally convenient. Data cloning which yields to maximum likelihood estimation
is used to conduct frequentist analysis of small area estimation for Normal and non-Normal
responses. It is shown that for the Normal and non-Normal responses, data cloning leads
to predictions and prediction intervals of small area parameters that have reasonably good
coverage.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Sample surveys are conducted with the purpose of providing reliable predictors for the finite population parameters
such as totals or means. Methods used in deriving such predictors (direct survey predictors) are based on total sample
size. However in the past few decades, there has been increasing demand to use sample survey data to get predictions for
sub-populations, such as counties or gender–age groups. Such sub-populations for which reliable predictions are needed
are called small areas. The traditional area-specific direct predictors tend to have inadequate precision because of the
small samples sizes corresponding to each small area. In health services research, policy decisions about implementing
programs or projects in these small areas are made using predictions of underlying parameters. Hence, survey researchers
are developing methods to provide more reliable predictions for small areas. To this end, model based estimators (Rao,
2003; Jiang and Lahiri, 2006; Jiang, 2010) have been proposed to borrow strength from stated areas by introducing random
effects. Depending on the nature of the data, either the linear mixed model (LMM) (Searle et al., 1992) or the generalized
linear mixed model (GLMM) (McCulloch and Searle, 2001) is most often used for small area estimation (Fay and Herriot,
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1979; Battese et al., 1988; Kass and Steffey, 1989; MacGibbon and Tomberlin, 1989; Prasad and Rao, 1990; Malec et al.,
1997; Ghosh et al., 1998; Singh et al., 1998; Datta et al., 2000; Ghosh et al., 2009). Among other approaches, parameters
of the LMM can be estimated using either the maximum likelihood (ML) or restricted ML (REML). It is straightforward
to predict the small area mean under the LMM by using the best linear unbiased predictor (BLUP), however obtaining its
prediction error and associated prediction interval are difficult. Both overall parameters estimation and prediction of small
area parameters under the GLMM are computationally difficult under the frequentist approach. The Bayesian approach has
become quite popular because of its computational convenience and the ability to provide not just the point predictors but
also the associated prediction intervals. However, the Bayesian approach to prediction of small area parameters crucially
depends on the specification of the prior. Non-informative or vague priors are often used to possibly get more information
from the data. However, lack of unique definition of non-informative prior leads to many different suggestions for such
priors. It is well known that the choice of prior affects the predicted values. Hence, implementation of the Bayesian approach
requires substantial care. For example, use of an inappropriate prior distribution can lead to improper posterior distribution
making the inferential statements somewhat questionable (e.g., Natarajan and McCulloch, 1995 and Hobert and Casella,
1996).

Recently, Lele et al. (2007) introduced an alternative approach, called data cloning, to compute the ML estimates and
their standard errors for general hierarchicalmodels. Similar to the Bayesian approach, data cloning avoids high dimensional
numerical integration and requires neither maximization nor differentiation of a function. Because these estimators are ML
estimators, unlike the Bayesian estimators, they are independent of the choice of the priors. By applying the data cloning
approach, non-estimable parameters are also flagged automatically and possibility of improper posterior distribution is
completely avoided. Extending this work to the GLMM situation, Lele et al. (2010) described an approach to compute
prediction and prediction intervals of the random effects. Thus, the data cloning approach is well suited to address the
issues in small area estimation using the frequentist paradigm.

In this paper, we use data cloning in the context of small area estimation. In the next section, we describe the small area
estimation problem in general and describe how data cloning can be used to obtain prediction and prediction intervals of
small area parameters. In Section 3, we use three real datasets to evaluate the performance of data cloning under cross-
sectional (normal and binomial mixed models) as well as cross-sectional and time-series (normal mixed model). The data
cloning is also evaluated through simulation studies (Section 4). Concluding remarks are given in Section 5.

2. Small area estimation using data cloning

The basic model in small area estimation can be described as follows. Let yij be the variable of interest for the jth unit
within the ith area (j = 1, . . . , ni; i = 1, . . . ,m). The yij are assumed to be conditionally independent with exponential
family p.d.f.

f (yij|θij, φij) = exp[{yijθij − a(θij)}/φij + b(yij, φij)]. (1)

The density (1) is parameterized with respect to the canonical parameters θij, known scale parameters φij and functions a(·)
and b(·). The natural parameters θij are then modeled as

h(θij) = x′

ijβ + ui + vij,

where h is a strictly increasing function, xij(p × 1) are known design vectors, β(p × 1) is a vector of unknown regression

coefficients, and ui and vij are random effects with ui
i.i.d.
∼ N(0, σ 2

u ) and vij
i.i.d.
∼ N(0, σ 2

v ). We also assume that the population
model holds for the sample. The objective in small area estimation is to make inferences on the small area parameters θij or
its variant. We now explain how data cloning can be used in the context of small area estimation.

2.1. Data cloning: a brief description

Let y = (y1, . . . , ym)′ be the observed data vector and assume that the elements of y are conditionally independent of the
random effects u = (u1, . . . , um, v11, . . . , vmnm)′ and drawn from a distribution in the exponential family with parameters
α1. It is also assumed that distribution of u depends on parameters α2:

yi|u ∼ fyi|u(yi|u, α1),

u ∼ gu(u|α2). (2)

The goal of the analysis is to estimate the model parameters α = (α1, α2)
′ and predict the random effects u. The likelihood

for (2) is given by

L(α; y) =

 m
i=1

fyi|u(yi|u, α1)gu(u|α2)du.



Download	English	Version:

https://daneshyari.com/en/article/6869543

Download	Persian	Version:

https://daneshyari.com/article/6869543

Daneshyari.com

https://daneshyari.com/en/article/6869543
https://daneshyari.com/article/6869543
https://daneshyari.com/

