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a b s t r a c t

Computational intensity and sequential nature of estimation techniques for Bayesian
methods in statistics and machine learning, combined with their increasing applications
for big data analytics, necessitate both the identification of potential opportunities to
parallelize techniques such as Monte Carlo Markov Chain (MCMC) sampling, and the
development of general strategies for mapping such parallel algorithms to modern CPUs
in order to elicit the performance up the compute-based and/or memory-based hardware
limits. Two opportunities for Single-Instruction Multiple-Data (SIMD) parallelization of
MCMC sampling for probabilistic graphical models are presented. In exchangeable models
with many observations such as Bayesian Generalized Linear Models (GLMs), child-node
contributions to the conditional posterior of each node can be calculated concurrently.
In undirected graphs with discrete-value nodes, concurrent sampling of conditionally-
independent nodes can be transformed into a SIMD form. High-performance libraries
with multi-threading and vectorization capabilities can be readily applied to such SIMD
opportunities to gain decent speedup, while a series of high-level source-code and runtime
modifications provide further performance boost by reducing parallelization overhead
and increasing data locality for Non-Uniform Memory Access architectures. For big-data
Bayesian GLM graphs, the end-result is a routine for evaluating the conditional posterior
and its gradient vector that is 5 times faster than a naive implementation using (built-in)
multi-threaded Intel MKL BLAS, and reaches within the striking distance of the memory-
bandwidth-induced hardware limit. Usingmulti-threading for cache-friendly, fine-grained
parallelization can outperform coarse-grained alternatives which are often less cache-
friendly, a likely scenario in modern predictive analytics workflow such as Hierarchical
Bayesian GLM, variable selection, and ensemble regression and classification. The proposed
optimization strategies improve the scaling of performance with number of cores and
width of vector units (applicable to many-core SIMD processors such as Intel Xeon Phi
and Graphic Processing Units), resulting in cost-effectiveness, energy efficiency (‘green
computing’), and higher speed on multi-core x86 processors.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction 1

Many inference problems in statistics and machine learning are best expressed in the language of probabilistic graphical 2

models, where a probability distribution function (PDF) over a high-dimensional parameter space can be motivated as the 3
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product of a collection of terms, each a function of a subset of the parameters. Inference in suchmodels requires summarizing1

the joint PDF, which can be quite complex and lacking closed-form integrals. Monte Carlo Markov Chain (MCMC) sampling2

techniques offer a practical way to summarize complex PDFs for which exact sampling algorithms are not available. For3

many real-world problems, MCMC sampling can be very time-consuming due to a combination of large data sets, high4

dimensionality of joint PDF, lack of conjugacy between likelihood and prior functions, and poor mixing of the MCMC chain.5

Fast MCMC sampling is, therefore, important for wider adoption of probabilistic models in real-world applications.6

For many years, software developers could rely on faster processors to see improved performance, without any need7

for code modification. In the past decade, however, chip manufacturers have warned of single-core performance saturation8

as CPU clock rates and instruction-level parallelism reach their physical limits (Jeffers and Reinders, 2013). Instead, we are9

seeing a steady rise in core counts andwidth of vector units, culminating in the emergence of many-core Single-Instruction-10

Multiple-Data (SIMD) architectures such as Graphic Processing Units (GPUs) and Intel Xeon Phi. Today, a CPU purchased for11

around $3000 can offer a theoretical peak double-precision performance of more than 300 GFLOPS, and many-core proces-12

sors selling for nearly the same price have broken the Tera FLOP barrier. For scientific computing applications to take full13

advantage of such enormous performance potential within a single compute node, the entire parallelism potential of an14

algorithm must be efficiently exposed to the compiler, and eventually to the hardware.15

There is a rich body of literature regarding parallel computing in general (see, e.g., Parkinson, 1987; Foster, 1995; Kirk and16

Wen-mei, 2012; McCool et al., 2012), and statistical and numerical analysis in particular (see, e.g., Kontoghiorghes, 2000,17

2005). Most efforts on parallelizingMCMC algorithms, however, have focused on identifying high-level parallelism opportu-18

nities such as concurrent sampling of conditionally-independent nodes (Wilkinson, 2010). Such coarse-grained parallelism19

is often mapped to a distributed-memory cluster or to multiple cores on a shared-memory node. As such, vectorization ca-20

pabilities of the processor are implicitly assumed to be the responsibility of libraries and compilers, resulting in a systemic21

under-utilization of vectorization in scientific computing applications. Furthermore,with increasing data sizes andwidening22

gap between floating-point performance and memory bandwidth, modern processors have seen an architectural change in23

memory layout fromSymmetricMulti-Processors (SMPs) toNon-UniformMemory Access (NUMA) designs in order to better24

scale totalmemory bandwidthwith the rising core count. The software-level, shared-memory viewof this asymmetricmem-25

ory is a convenient programming feature but can lead to a critical memory bandwidth under-utilization for data-intensive26

applications. This paper seeks to expand our ability to make efficient use of multicore x86 processors – today’s most ubiq-27

uitous computing platform – to rapidly generate samples from the posterior distribution of model parameters. Our focus28

is two-fold: (1) identifying opportunities for SIMD parallelism in MCMC sampling of graphical models, and (2) efficiently29

mapping such SIMD opportunities to multi-threading and vectorization parallel modes on x86 processors. Using examples30

from directed and undirected graphs, we show that off-the-shelf, multi-threaded and vectorized high-performance libraries31

(along with vectorizing compilers) provide a decent speedup with small programming effort. Additionally, a series of high-32

level source-code and runtime modifications lead to significant additional speedup, even approaching hardware-induced33

performance limits. Vectorization of SIMD parallelism opportunities are often complementary with coarse-grained paral-34

lel modes and create a multiplicative performance boost. Moreover, we illustrate the counter-intuitive result that, given35

a limited number of cores available, efficient fine-grained (SIMD) multi-threading can outperform coarse-grained multi-36

threading over a range of data sizes where L3 cache utilization is the dominating factor. In the process, we propose a general37

strategy for optimally combining a sequence ofmaps tominimizemulti-threading overheadwhilemaximizing vectorization38

coverage. This strategy naturally allows for data locality at the memory and cache level, and significantly reduces the cost39

of complex synchronizations such as reduction on arrays. Furthermore, a differential update strategy for MCMC sampling40

of graphical models is proposed which, where applicable, can lead to significant reduction in data movement as well as the41

amount of computation, applicable to graphs with continuous as well as discrete nodes.42

The remainder of this paper is organized as follows. In Section 2we lay the theoretical foundation for the paper, including43

a summary of previous research on parallel MCMC, and an overview of two single-chain parallelization techniques for paral-44

lel MCMC of Directed Acyclic Graphs (DAGs). In Section 3we do a detailed performance analysis and optimization of parallel45

MCMC for Bayesian GLM (focusing on logistic regression). In Section 4 we discuss several extensions to the ideas developed46

in Section 3, including Hierarchical Bayesian (HB) GLM, calculation of derivatives, Ising model, batch RNG, distributed and47

many-core computing, and compile-time loop unrolling. Section 5 contains a summary of our results and pointers for future48

research.49

Given the extensive and specialized nature of performance and optimization analyses presented in the paper, we have50

included high-level summaries of lessons and implications for high-performance software development throughout the51

paper. These summaries are labelled as Design Guideline. A table containing a list of all design guidelines can be found in52

the Summary section (Fig. 19).53

2. Parallel MCMC for graphical models54

2.1. Previous work on parallel MCMC55

A straightforward method for parallel MCMC is to run multiple chains (Wilkinson, 2010). Since each chain must56

go through the burn-in period individually, multi-chain parallelization is less suitable for complex models with poor
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