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a b s t r a c t

Joint modeling of multiple health related random variables is essential to develop an un-
derstanding for the public health consequences of an aging population. This is particularly
true for patients suffering frommultiple chronic diseases. The contribution is to introduce
a novel model for multivariate data where some response variables are discrete and some
are continuous. It is based on pair copula constructions (PCCs) and has two major advan-
tages over existing methodology. First, expressing the joint dependence structure in terms
of bivariate copulas leads to a computationally advantageous expression for the likelihood
function. This makes maximum likelihood estimation feasible for large multidimensional
data sets. Second, different and possibly asymmetric bivariate (conditional) marginal dis-
tributions are allowed which is necessary to accurately describe the limiting behavior of
conditional distributions formixed discrete and continuous responses. The advantages and
the favorable predictive performance of the model are demonstrated using data from the
Second Longitudinal Study of Aging (LSOA II).

© 2015 Published by Elsevier B.V.

1. Introduction 1

The aim of this study is to demonstrate the use of a novel copula model for discrete and continuous response variables, 2

which will help to broaden our understanding of pathways to comorbid conditions. We apply this model to data from the 3

Second Longitudinal Study of Aging (LSOA II), which contains information on chronic diseases in the age group of 70+ on 4

the national level. 5

The prevalence of chronic diseases tends to increase with age. Heart disease, stroke, hypertension, diabetes, obesity, and 6

arthritis are among the most common. While the aforementioned conditions are often studied in an isolated setting, the 7

elderly are likely to develop ‘‘comorbid conditions’’, which refers to one or more diseases or conditions occurring together 8

with the primary condition. Although there have been extensive studies exploring the relationship between two conditions 9

controlling for other comorbid conditions, little research has been focused on comorbid conditions in a systematic jointmod- 10

eling framework. This might be helpful to fill the gaps in our current understanding of comorbidity and reveal multivariate 11

relationships. 12

Given the discrete nature of some response variables, copula models for continuous data cannot be applied to the LSOA II 13

data. There are two standard methods for discrete marginal distributions in copula modeling. (i) For copula functions avail- 14

able in closed form, the probability mass function (pmf) can be computed by taking finite differences of the copula function 15

∗ Corresponding author.
E-mail address: stoeber@ma.tum.de (J. Stöber).

http://dx.doi.org/10.1016/j.csda.2015.02.001
0167-9473/© 2015 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.csda.2015.02.001
http://www.elsevier.com/locate/csda
http://www.elsevier.com/locate/csda
mailto:stoeber@ma.tum.de
http://dx.doi.org/10.1016/j.csda.2015.02.001


2 J. Stöber et al. / Computational Statistics and Data Analysis xx (xxxx) xxx–xxx

for the discrete margins. This means that the number of evaluations of the copula function grows exponentially with the1

number of discrete variables (for our PCC model, the number of evaluations of copula functions only grows quadratically).2

Recent advances in computational capabilities and in approximation methods to the likelihood (see Masarotto and Varin,3

2012 orNikoloulopoulos, 2013) increase the scope of application for thismethod. However, the basic challenge that the com-4

putational complexity increases significantly with dimension and sample size remains. For further applications of models of5

this class see for example Shen andWeissfeld (2006), Nikoloulopoulos andKarlis (2006), Song et al. (2009) or He et al. (2012).6

(ii) As an alternative to the direct application of a copula to discrete data, latent continuous variables may be introduced.7

Then, the dependence structure of the latent variables is modeled instead of the discrete variables (see Pitt et al., 2006; Hoff,8

2007; Dobra and Lenkoski, 2011;Murray et al., 2013, where this approach is applied for Gaussianmodels, Smith and Khaled,9

2012, Danaher and Smith, 2011 extend the approach to a non-Gaussian setup). This has appealing features since it enables10

practitioners to apply well-known dependence models and also helps to avoid technicalities when working with discrete11

copulas (Nešlehová, 2007; Genest and Nešlehová, 2007). However, inference for such models is usually computationally12

difficult due to the latent variables.13

The method presented here is based on pair copula constructions (PCCs) and has two major advantages over existing14

copula models. By generalizing the models of Panagiotelis et al. (2012) and Aas et al. (2009), it is computationally efficient15

for discrete variables and makes maximum likelihood inference feasible in high dimensions. It further combines different16

and also asymmetric copula families in a multivariate model, giving rise to very flexible higher dimensional distributions.17

The remainder of the paper is structured as follows. Section 2 introduces the multivariate model which we consider,18

and inference and model selection is considered in Section 3. The motivating data set of our study is analyzed in Section 4.19

Section 5 summarizes our results and concludes the paper.20

2. Multivariate model21

In this section, we introduce the basic model using GLMs and the copula paradigm. In a generic form, let Yijt be the re-22

sponse/outcome of the ith patient for chronic disease j at observation/wave t , with i = 1, 2, . . . ,N, j = 1, 2, . . . , J and23

t = 1, 2, . . . , T . The covariates we consider in our analysis for patient i, disease j and time observation t are accordingly24

denoted as xijt .25

For all j, t , we assume that Yijt are independent and have distribution function26

Fj(yijt |µijt , φj,t),27

where the mean parameter µijt = hj(xijtβT
jt) is a function of the covariates and φjt is a possible scaling parameter. In28

particular, for j corresponding to a continuous response variable (the BMI in the data set which we will consider later),29

Fj can be the inverse Gaussian distribution with distribution function30

Fig(y|µ, φ) = Φ
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and hj can be chosen as hj(·) = exp(·). If j corresponds to a binary response variable indicating the presence/absence of a32

chronic disease, a natural choice for Fj is the Bernoulli cdf with33

Fb(y|µ) =

1 y ≥ 1
1 − µ 1 > y ≥ 0
0 0 > y.

34

Here, the canonical choice for the link function hj is hj =
1

1+e−(·) .35

Furthermore, we assume that for any t , themarginal distributions Fj are linkedwith a copula function Ct . Hence, the joint36

distribution function for the outcome variables (Yi,1,t , . . . , Yi,J,t) given covariates (xi1t , . . . , xiJt) is given as37

Ft(yi,1,t , yi,2,t , . . . , yi,J,t |xi1t , . . . , xiJt) = Ct(F1(yi,1,t |µi1t , φ1t), F2(yi,2,t |µi2t , φ2t), . . . , FJ(yi,J,t |µiJt , φJt)). (1)38

This copula function is constructed frompair copula functions by subsequent conditioning. To illustrate the general principle,39

let us first consider a three dimensional example with two continuous variables Y1 ∈ R, Y3 ∈ R with densities f1, f3 and one40

discrete variable Y2 ∈ Z with pmf p2. For the decomposition into bivariate building blocks, we start with the (generalized)41

joint density of Y = (Y1, Y2, Y3). With generalized density, we mean the density of Y w.r.t. the product measure on the42

respective supports of the marginal variables. For discrete margins with values in R this is the counting measure on the set43

of possible outcomes, for continuous margins we consider the Lebesgue measure in R. Given the cumulative distribution44

function FY of Y, it is given by45

fY(y1, y2, y3) =
∂2

∂y1∂y3
(FY(y1, y2, y3) − FY(y1, y2 − 1, y3)) ,46

while the generalized density f2 of Y2 is its pmf f2(·) = p2(·). By conditioning, the joint density can be decomposed as47

follows:48

fY(y1, y2, y3) = f1|2,3(y1|y2, y3) · f2|3(y2|y3) · f3(y3). (2)49
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